Mercurial > hg > Members > kono > Proof > category
changeset 1058:79e7e0367189
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 19 Apr 2021 23:12:17 +0900 |
parents | 88f441d5bb18 |
children | e0819260ba18 |
files | src/Polynominal.agda |
diffstat | 1 files changed, 7 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Polynominal.agda Mon Apr 19 17:42:59 2021 +0900 +++ b/src/Polynominal.agda Mon Apr 19 23:12:17 2021 +0900 @@ -152,17 +152,18 @@ -- -- f ∙ < x ∙ ○ b , id1 A b > ≈ f → f ≈ k x (phi p) -- - k-cong : {a b c : Obj A} → (x : Hom A 1 a) → (f g : Hom A b c ) → A [ f ≈ g ] → (fp : φ x {b} {c} f ) (gp : φ x {b} {c} g ) - → A [ k x fp ≈ k x gp ] - k-cong = {!!} + -- why k x {x ∙ ○ b} (iv ii i ) ≡ k x {x ∙ ○ b} i? + -- if A is locally small, it is ≡-cong. + postulate + k-cong : {a b c : Obj A} → (x : Hom A 1 a) → (f g : Hom A b c ) → A [ f ≈ g ] → (fp : φ x {b} {c} f ) (gp : φ x {b} {c} g ) + → A [ k x fp ≈ k x gp ] uniq : {a b c : Obj A} → (x : Hom A 1 a) (f : Hom A b c) (phi : φ x {b} {c} f ) (f' : Hom A (a ∧ b) c) → A [ f' ∙ < x ∙ ○ b , id1 A b > ≈ f ] → A [ f' ≈ k x phi ] uniq {a} {b} {c} x f phi f' fx=p = sym (begin - -- k x phi ≈⟨ uniq x (f ∙ < x ∙ ○ b , id1 A b > ) i (k x phi) {!!} ⟩ k x phi ≈⟨ k-cong x _ _ (sym fx=p) phi i ⟩ k x {f' ∙ < x ∙ ○ b , id1 A b >} i ≈⟨ trans-hom (sym assoc) (cdr (IsCCC.distr-π isCCC) ) ⟩ -- ( f' ∙ < x ∙ ○ b , id1 A b> ) ∙ π' - f' ∙ k x {< x ∙ ○ b , id1 A b >} (iii i i ) -- ( f' ∙ < (x ∙ ○ b) ∙ π' , id1 A b ∙ π' > ) - ≈↑⟨ cdr (π-cong {!!} refl-hom ) ⟩ + f' ∙ k x {< x ∙ ○ b , id1 A b >} (iii i i ) -- ( f' ∙ < (x ∙ ○ b) ∙ π' , id1 A b ∙ π' > ) + ≈⟨ cdr (π-cong (k-cong x (x ∙ ○ b) (x ∙ ○ b) refl-hom i (iv ii i) ) refl-hom) ⟩ f' ∙ < k x {x ∙ ○ b} (iv ii i ) , k x {id1 A b} i > ≈⟨ refl-hom ⟩ f' ∙ < k x {x} ii ∙ < π , k x {○ b} i > , k x {id1 A b} i > -- ( f' ∙ < π ∙ < π , (x ∙ ○ b) ∙ π' > , id1 A b ∙ π' > ) ≈⟨ cdr (π-cong (cdr (π-cong refl-hom (car e2))) idL ) ⟩