Mercurial > hg > Members > kono > Proof > category
changeset 695:7a6ee564e3a8
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 13 Nov 2017 13:31:35 +0900 |
parents | 2043f7fd4273 |
children | 10ccac3bc285 |
files | cat-utility.agda freyd.agda freyd2.agda |
diffstat | 3 files changed, 7 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/cat-utility.agda Mon Nov 13 12:39:43 2017 +0900 +++ b/cat-utility.agda Mon Nov 13 13:31:35 2017 +0900 @@ -356,11 +356,6 @@ ; t0 = LimitNat I A C Γ (a0 limita ) (t0 limita) G ; isLimit = preserve Γ limita } - record CreateLimit { c₁' c₂' ℓ' : Level} { c₁ c₂ ℓ : Level} ( I : Category c₁ c₂ ℓ ) ( A : Category c₁' c₂' ℓ' ) - : Set (suc (c₁' ⊔ c₂' ⊔ ℓ' ⊔ c₁ ⊔ c₂ ⊔ ℓ )) where - field - climit : ( Γ : Functor I A ) → Limit I A Γ - record Complete { c₁' c₂' ℓ' : Level} { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( I : Category c₁' c₂' ℓ' ) : Set (suc (c₁' ⊔ c₂' ⊔ ℓ' ⊔ c₁ ⊔ c₂ ⊔ ℓ )) where field @@ -381,7 +376,7 @@ -- initial object - record IsInitialObject {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (i : Obj A) : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where + record HasInitialObject {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (i : Obj A) : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where field initial : ∀( a : Obj A ) → Hom A i a uniqueness : { a : Obj A } → ( f : Hom A i a ) → A [ f ≈ initial a ] @@ -389,5 +384,5 @@ record InitialObject {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where field initialObject : Obj A - isInitialObject : IsInitialObject A initialObject + hasInitialObject : HasInitialObject A initialObject
--- a/freyd.agda Mon Nov 13 12:39:43 2017 +0900 +++ b/freyd.agda Mon Nov 13 13:31:35 2017 +0900 @@ -48,7 +48,7 @@ initialFromPreInitialFullSubcategory : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (comp : Complete A A) (SFS : FullSubcategory A ) → - (PI : PreInitial A (FSF SFS )) → IsInitialObject A (limit-c comp (FSF SFS)) + (PI : PreInitial A (FSF SFS )) → HasInitialObject A (limit-c comp (FSF SFS)) initialFromPreInitialFullSubcategory A comp SFS PI = record { initial = initialArrow ; uniqueness = λ {a} f → lemma1 a f
--- a/freyd2.agda Mon Nov 13 12:39:43 2017 +0900 +++ b/freyd2.agda Mon Nov 13 13:31:35 2017 +0900 @@ -89,7 +89,7 @@ where open import Comma1 F G open Complete -open IsInitialObject +open HasInitialObject open import Comma1 open CommaObj open LimitPreserve @@ -182,7 +182,7 @@ KUhasInitialObj : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (a : Obj A ) - → IsInitialObject ( K A Sets * ↓ (Yoneda A a) ) ( record { obj = a ; hom = λ x → id1 A a } ) + → HasInitialObject ( K A Sets * ↓ (Yoneda A a) ) ( record { obj = a ; hom = λ x → id1 A a } ) KUhasInitialObj {c₁} {c₂} {ℓ} A a = record { initial = λ b → initial0 b ; uniqueness = λ f → unique f @@ -278,7 +278,7 @@ UisRepresentable : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (U : Functor A (Sets {c₂}) ) ( i : Obj ( K A Sets * ↓ U) ) - (In : IsInitialObject ( K A Sets * ↓ U) i ) + (In : HasInitialObject ( K A Sets * ↓ U) i ) → Representable A U (obj i) UisRepresentable A U i In = record { repr→ = record { TMap = tmap1 ; isNTrans = record { commute = comm1 } } @@ -370,7 +370,7 @@ module Adjoint-Functor {c₁ c₂ ℓ : Level} (A B : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) ( comp : Complete A I ) (U : Functor A B ) (i : (b : Obj B) → Obj ( K A B b ↓ U) ) - (In : (b : Obj B) → IsInitialObject ( K A B b ↓ U) (i b) ) + (In : (b : Obj B) → HasInitialObject ( K A B b ↓ U) (i b) ) where tmap-η : (y : Obj B) → Hom B y (FObj U (obj (i y)))