Mercurial > hg > Members > kono > Proof > category
changeset 701:7a729bb62ce3
Monoidal Functor on going ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 22 Nov 2017 02:09:22 +0900 |
parents | cfd2d402c486 |
children | d16327b48b83 |
files | monoidal.agda |
diffstat | 1 files changed, 37 insertions(+), 35 deletions(-) [+] |
line wrap: on
line diff
--- a/monoidal.agda Tue Nov 21 22:42:33 2017 +0900 +++ b/monoidal.agda Wed Nov 22 02:09:22 2017 +0900 @@ -69,21 +69,21 @@ C [ C [ f o ≅→ (mρ-iso {a} ) ] ≈ C [ ≅→ (mρ-iso ) o ( f ■ id1 C I ) ] ] αABC□1D : {a b c d e : Obj C } → Hom C (((a □ b) □ c ) □ d) ((a □ (b □ c)) □ d) - αABC□1D = {!!} + αABC□1D {a} {b} {c} {d} {e} = ( ≅→ mα-iso ■ id1 C d ) αAB□CD : {a b c d e : Obj C } → Hom C ((a □ (b □ c)) □ d) (a □ ((b □ c ) □ d)) - αAB□CD = {!!} + αAB□CD {a} {b} {c} {d} {e} = ≅→ mα-iso 1A□BCD : {a b c d e : Obj C } → Hom C (a □ ((b □ c ) □ d)) (a □ (b □ ( c □ d) )) - 1A□BCD = {!!} + 1A□BCD {a} {b} {c} {d} {e} = ( id1 C a ■ ≅→ mα-iso ) αABC□D : {a b c d e : Obj C } → Hom C (a □ (b □ ( c □ d) )) ((a □ b ) □ (c □ d)) - αABC□D = {!!} + αABC□D {a} {b} {c} {d} {e} = ≅← mα-iso αA□BCD : {a b c d e : Obj C } → Hom C (((a □ b) □ c ) □ d) ((a □ b ) □ (c □ d)) - αA□BCD = {!!} + αA□BCD {a} {b} {c} {d} {e} = ≅→ mα-iso αAIB : {a b : Obj C } → Hom C (( a □ I ) □ b ) (a □ ( I □ b )) - αAIB = {!!} + αAIB {a} {b} = ≅→ mα-iso 1A□λB : {a b : Obj C } → Hom C (a □ ( I □ b )) ( a □ b ) - 1A□λB = {!!} + 1A□λB {a} {b} = id1 C a ■ ≅→ mλ-iso ρA□IB : {a b : Obj C } → Hom C (( a □ I ) □ b ) ( a □ b ) - ρA□IB = {!!} + ρA□IB {a} {b} = ≅→ mρ-iso ■ id1 C b field comm-penta : {a b c d e : Obj C} @@ -120,37 +120,39 @@ _■_ f g = FMap (Monoidal.m-bi N) ( f , g ) open Iso open Monoidal - open IsMonoidal + open IsMonoidal hiding ( _■_ ; _□_ ) αC : {a b c : Obj C} → Hom C (( a ⊗ b ) ⊗ c ) ( a ⊗ ( b ⊗ c ) ) αC {a} {b} {c} = ≅→ (mα-iso (isMonoidal M) {a} {b} {c}) αD : {a b c : Obj D} → Hom D (( a ● b ) ● c ) ( a ● ( b ● c ) ) αD {a} {b} {c} = ≅→ (mα-iso (isMonoidal N) {a} {b} {c}) - 1●φBC : {a b c : Obj C} → Hom D ( FObj MF a ● ( FObj MF b ● FObj MF c ) ) ( FObj MF a ● ( FObj MF ( b ⊗ c ) )) - 1●φBC = {!!} - φAB⊗C : {a b c : Obj C} → Hom D ( FObj MF a ● ( FObj MF ( b ⊗ c ) )) (FObj MF ( a ⊗ ( b ⊗ c ))) - φAB⊗C = {!!} - φAB●1 : {a b c : Obj C} → Hom D ( ( FObj MF a ● FObj MF b ) ● FObj MF c ) ( FObj MF ( a ⊗ b ) ● FObj MF c ) - φAB●1 = {!!} - φA⊗BC : {a b c : Obj C} → Hom D ( FObj MF ( a ⊗ b ) ● FObj MF c ) (FObj MF ( (a ⊗ b ) ⊗ c )) - φA⊗BC = {!!} - FαC : {a b c : Obj C} → Hom D (FObj MF ( (a ⊗ b ) ⊗ c )) (FObj MF ( a ⊗ ( b ⊗ c ))) - FαC = {!!} - 1●φ : { a b : Obj C } → Hom D (FObj MF a ● Monoidal.m-i N ) ( FObj MF a ● FObj MF ( Monoidal.m-i M ) ) - 1●φ = {!!} - φAIC : { a b : Obj C } → Hom D ( FObj MF a ● FObj MF ( Monoidal.m-i M ) ) (FObj MF ( a ⊗ Monoidal.m-i M )) - φAIC = {!!} - FρC : { a b : Obj C } → Hom D (FObj MF ( a ⊗ Monoidal.m-i M ))( FObj MF a ) - FρC = {!!} - ρD : { a b : Obj C } → Hom D (FObj MF a ● Monoidal.m-i N ) ( FObj MF a ) - ρD = {!!} - φ●1 : { a b : Obj C } → Hom D (Monoidal.m-i N ● FObj MF b ) ( FObj MF ( Monoidal.m-i M ) ● FObj MF b ) - φ●1 = {!!} - φICB : { a b : Obj C } → Hom D ( FObj MF ( Monoidal.m-i M ) ● FObj MF b ) ( FObj MF ( ( Monoidal.m-i M ) ⊗ b ) ) - φICB = {!!} - FλD : { a b : Obj C } → Hom D ( FObj MF ( ( Monoidal.m-i M ) ⊗ b ) ) (FObj MF b ) - FλD = {!!} - λD : { a b : Obj C } → Hom D (Monoidal.m-i N ● FObj MF b ) (FObj MF b ) - λD = {!!} + F : Obj C → Obj D + F x = FObj MF x + 1●φBC : {a b c : Obj C} → Hom D ( F a ● ( F b ● F c ) ) ( F a ● ( F ( b ⊗ c ) )) + 1●φBC {a} {b} {c} = id1 D (F a) ■ {!!} + φAB⊗C : {a b c : Obj C} → Hom D ( F a ● ( F ( b ⊗ c ) )) (F ( a ⊗ ( b ⊗ c ))) + φAB⊗C {a} {b} {c} = {!!} + φAB●1 : {a b c : Obj C} → Hom D ( ( F a ● F b ) ● F c ) ( F ( a ⊗ b ) ● F c ) + φAB●1 {a} {b} {c} = {!!} ■ id1 D (F c) + φA⊗BC : {a b c : Obj C} → Hom D ( F ( a ⊗ b ) ● F c ) (F ( (a ⊗ b ) ⊗ c )) + φA⊗BC {a} {b} {c} = {!!} + FαC : {a b c : Obj C} → Hom D (F ( (a ⊗ b ) ⊗ c )) (F ( a ⊗ ( b ⊗ c ))) + FαC {a} {b} {c} = FMap MF ( ≅→ (mα-iso (isMonoidal M) {a} {b} {c}) ) + 1●φ : { a b : Obj C } → Hom D (F a ● Monoidal.m-i N ) ( F a ● F ( Monoidal.m-i M ) ) + 1●φ {a} {b} = id1 D (F a) ■ φ + φAIC : { a b : Obj C } → Hom D ( F a ● F ( Monoidal.m-i M ) ) (F ( a ⊗ Monoidal.m-i M )) + φAIC {a} {b} = {!!} + FρC : { a b : Obj C } → Hom D (F ( a ⊗ Monoidal.m-i M ))( F a ) + FρC {a} {b} = FMap MF ( ≅→ (mρ-iso (isMonoidal M) {a} ) ) + ρD : { a b : Obj C } → Hom D (F a ● Monoidal.m-i N ) ( F a ) + ρD {a} {b} = ≅→ (mρ-iso (isMonoidal N) {F a} ) + φ●1 : { a b : Obj C } → Hom D (Monoidal.m-i N ● F b ) ( F ( Monoidal.m-i M ) ● F b ) + φ●1 {a} {b} = φ ■ id1 D (F b) + φICB : { a b : Obj C } → Hom D ( F ( Monoidal.m-i M ) ● F b ) ( F ( ( Monoidal.m-i M ) ⊗ b ) ) + φICB {a} {b} = {!!} + FλD : { a b : Obj C } → Hom D ( F ( ( Monoidal.m-i M ) ⊗ b ) ) (F b ) + FλD {a} {b} = FMap MF ( ≅→ (mλ-iso (isMonoidal M) {b} ) ) + λD : { a b : Obj C } → Hom D (Monoidal.m-i N ● F b ) (F b ) + λD {a} {b} = ≅→ (mλ-iso (isMonoidal N) {F b} ) field comm1 : {a b c : Obj C } → D [ D [ φAB⊗C {a} {b} {c} o D [ 1●φBC o αD ] ] ≈ D [ FαC o D [ φA⊗BC o φAB●1 ] ] ] comm-idr : {a b : Obj C } → D [ D [ FρC {a} {b} o D [ φAIC {a} {b} o 1●φ {a} {b} ] ] ≈ ρD {a} {b} ]