Mercurial > hg > Members > kono > Proof > category
changeset 280:7ae58263d45b
univ2limit done.
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 23 Sep 2013 10:57:39 +0900 |
parents | 8df8e74e6316 |
children | dbd2044add2a |
files | pullback.agda |
diffstat | 1 files changed, 3 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/pullback.agda Mon Sep 23 03:31:24 2013 +0900 +++ b/pullback.agda Mon Sep 23 10:57:39 2013 +0900 @@ -293,8 +293,8 @@ t0f=t1 {a} {t} {i} = let open ≈-Reasoning (A) in begin TMap (ε Γ) i o limit1 a t ≈⟨⟩ - TMap (ε Γ) i o _*' univ {{!!}} {{!!}} t - ≈⟨ coIsUniversalMapping.couniversalMapping ( iscoUniversalMapping univ) {{!!}} {{!!}} {{!!}} ⟩ + TMap (ε Γ) i o _*' univ {Γ} {a} t + ≈⟨ coIsUniversalMapping.couniversalMapping ( iscoUniversalMapping univ) {Γ} {a} {t} ⟩ TMap t i ∎ limit-uniqueness1 : { a : Obj A } → { t : NTrans I A ( K I a ) Γ } → { f : Hom A a (U Γ)} @@ -305,9 +305,6 @@ f ∎ - - - limit-from : ( prod : (a b ab : Obj A) ( π1 : Hom A ab a ) ( π2 : Hom A ab b ) → Product A a b ab π1 π2 ) @@ -317,4 +314,4 @@ ( U : Obj (A ^ I ) → Obj A ) ( ε : ( b : Obj (A ^ I ) ) → NTrans I A (K I (U b)) b ) → ( Γ : Functor I A ) → Limit I Γ (U Γ) (ε Γ) -limit-from = ? +limit-from proc eqa = {!!}