Mercurial > hg > Members > kono > Proof > category
changeset 1085:80c15ee86ffa
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 16 May 2021 13:17:22 +0900 |
parents | 372ea20015e8 |
children | 6fbb7fdf92d3 |
files | src/Polynominal.agda |
diffstat | 1 files changed, 18 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Polynominal.agda Sun May 16 07:32:31 2021 +0900 +++ b/src/Polynominal.agda Sun May 16 13:17:22 2021 +0900 @@ -163,7 +163,7 @@ functional-completeness {a} {b} {c} p = record { fun = k (Poly.x p) (Poly.phi p) ; fp = fc0 (Poly.x p) (Poly.f p) (Poly.phi p) - ; uniq = λ f eq → uniq (Poly.x p) (Poly.f p) (Poly.phi p) f (Poly.nf p ) eq + ; uniq = λ f eq → uniq (Poly.x p) (Poly.f p) (Poly.phi p) f (Poly.nf p ) eq } where fc0 : {a b c : Obj A} → (x : Hom A 1 a) (f : Hom A b c) (phi : φ x {b} {c} f ) → A [ k x phi ∙ < x ∙ ○ b , id1 A b > ≈ f ] @@ -226,20 +226,28 @@ k x phi ≈↑⟨ ki x f phi ne ⟩ k x {f} (i _) ≈↑⟨ car fx=p ⟩ k x {f' ∙ < x ∙ ○ b , id1 A b >} (i _) ≈⟨ trans-hom (sym assoc) (cdr (IsCCC.distr-π isCCC) ) ⟩ -- ( f' ∙ < x ∙ ○ b , id1 A b> ) ∙ π' - f' ∙ k x {< x ∙ ○ b , id1 A b >} (iii (i _) (i _) ) -- ( f' ∙ < (x ∙ ○ b) ∙ π' , id1 A b ∙ π' > ) - ≈⟨ cdr (begin - k x (iii (i (x ∙ ○ b)) (i (id1 A _))) ≈⟨⟩ - < ( x ∙ (○ b)) ∙ π' , id1 A _ ∙ π' > ≈⟨ π-cong {!!} refl-hom ⟩ - < π , id1 A _ ∙ π' > ≈↑⟨ π-cong (IsCCC.e3a isCCC) refl-hom ⟩ - < π ∙ < π , (○ b) ∙ π' > , id1 A _ ∙ π' > ≈⟨⟩ - < k x (iv ii (i (○ b))) , k x (i (id1 A _)) > ∎ ) ⟩ - f' ∙ < k x {x ∙ ○ b} (iv ii (i _) ) , k x {id1 A b} (i _) > ≈⟨ refl-hom ⟩ + f' ∙ k x {< x ∙ ○ b , id1 A b >} (iii (i _) (i _) ) ≈⟨⟩ -- ( f' ∙ < (x ∙ ○ b) ∙ π' , id1 A b ∙ π' > ) + f' ∙ < k x (i (x ∙ ○ b)) , k x {id1 A b} (i _) > ≈⟨ cdr (π-cong u2 refl-hom) ⟩ -- ( f' ∙ < (x ∙ ○ b) ∙ π' , id1 A b ∙ π' > ) f' ∙ < k x {x} ii ∙ < π , k x {○ b} (i _) > , k x {id1 A b} (i _) > -- ( f' ∙ < π ∙ < π , (x ∙ ○ b) ∙ π' > , id1 A b ∙ π' > ) ≈⟨ cdr (π-cong (cdr (π-cong refl-hom (car e2))) idL ) ⟩ f' ∙ < π ∙ < π , (○ b ∙ π' ) > , π' > ≈⟨ cdr (π-cong (IsCCC.e3a isCCC) refl-hom) ⟩ f' ∙ < π , π' > ≈⟨ cdr (IsCCC.π-id isCCC) ⟩ f' ∙ id1 A _ ≈⟨ idR ⟩ - f' ∎ ) + f' ∎ ) where + u1 : x ∙ ○ b ≈ ( x ∙ ○ _ ) ∙ ( < π , k x {○ b} (i _) > ∙ < x ∙ ○ b , id1 A b > ) + u1 = begin + x ∙ ○ b ≈↑⟨ cdr e2 ⟩ + x ∙ ( ○ _ ∙ _ ) ≈⟨ assoc ⟩ + ( x ∙ ○ _ ) ∙ ( < π , k x {○ b} (i _) > ∙ < x ∙ ○ b , id1 A b > ) ∎ + u2 : k x {x ∙ ○ b} (i _) ≈ k x {x} ii ∙ < π , k x {○ b} (i _) > + u2 = begin + k x {x ∙ ○ b} (i _) ≈↑⟨ assoc ⟩ --- (x ∙ ○ b) ∙ π' + x ∙ (○ _ ∙ π') ≈⟨ cdr e2 ⟩ + x ∙ ○ _ ≈↑⟨ IsCCC.e3a isCCC ⟩ + k x {x} ii ∙ < ( x ∙ ○ _ ) , k x {○ b} (i _) > ≈⟨ {!!} ⟩ + k x {x} ii ∙ < π ∙ < x ∙ {!!} , id1 A _ > , k x {○ b} (i _) > ≈⟨ {!!} ⟩ + k x {x} ii ∙ < π ∙ id1 A _ , k x {○ b} (i _) > ≈⟨ {!!} ⟩ + k x {x} ii ∙ < π , k x {○ b} (i _) > ∎ -- functional completeness ε form