Mercurial > hg > Members > kono > Proof > category
changeset 246:80d9ef47566b
cong-γ1 done, cong-δ1 remains
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 09 Sep 2013 12:35:56 +0900 |
parents | 0d1f7bbea9bc |
children | f6e8d6d04af8 |
files | equalizer.agda |
diffstat | 1 files changed, 32 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/equalizer.agda Mon Sep 09 12:02:48 2013 +0900 +++ b/equalizer.agda Mon Sep 09 12:35:56 2013 +0900 @@ -235,8 +235,8 @@ γ = λ {a} {b} {c} {d} f g h → k (eqa f g ) {d} ( A [ h o (equalizer ( eqa (A [ f o h ] ) (A [ g o h ] ))) ] ) (lemma-equ4 {a} {b} {c} {d} f g h ) ; -- Hom A c d δ = λ {a} {b} {c} e f → k (eqa {a} {b} {c} f f {e} ) (id1 A a) (lemma-equ2 f); -- Hom A a c - cong-α = cong-α1 ; - cong-γ = cong-γ1 ; + cong-α = λ {a b c e f g g'} eq → cong-α1 {a} {b} {c} {e} {f} {g} {g'} eq ; + cong-γ = λ {a} {_} {c} {d} {f} {g} {h} {h'} eq → cong-γ1 {a} {_} {c} {d} {f} {g} {h} {h'} eq ; cong-δ = λ {a b c e f f'} f=f' → cong-δ1 {a} {b} {c} {e} {f} {f'} f=f' ; b1 = fe=ge (eqa {a} {b} {c} f g {e}) ; b2 = lemma-b2 ; @@ -279,18 +279,40 @@ cong-α1 : {a b c : Obj A } → { e : Hom A c a } → {f g g' : Hom A a b } → A [ g ≈ g' ] → A [ equalizer (eqa {a} {b} {c} f g {e} )≈ equalizer (eqa {a} {b} {c} f g' {e} ) ] cong-α1 {a} {b} {c} {e} {f} {g} {g'} eq = let open ≈-Reasoning (A) in refl-hom - cong-γ1 : {a _ c d : Obj A } → {f g : Hom A a b} {h h' : Hom A d a } → A [ h ≈ h' ] → - A [ k (eqa f g ) {d} ( A [ h o (equalizer ( eqa (A [ f o h ] ) (A [ g o h ] ))) ] ) (lemma-equ4 {a} {b} {c} {d} f g h ) - ≈ k (eqa f g ) {d} ( A [ h' o (equalizer ( eqa (A [ f o h' ] ) (A [ g o h' ] ))) ] ) (lemma-equ4 {a} {b} {c} {d} f g h' ) ] - cong-γ1 {a} {_} {c} {d} {f} {g} {h} {h'} h=h' = let open ≈-Reasoning (A) in begin + cong-γ1 : {a _ c d : Obj A } → {f g : Hom A a b} {h h' : Hom A d a } → A [ h ≈ h' ] → { e : Hom A c a} → + A [ k (eqa f g {e} ) {d} ( A [ h o (equalizer ( eqa (A [ f o h ] ) (A [ g o h ] ) {id1 A d} )) ] ) (lemma-equ4 {a} {b} {c} {d} f g h ) + ≈ k (eqa f g {e} ) {d} ( A [ h' o (equalizer ( eqa (A [ f o h' ] ) (A [ g o h' ] ) {id1 A d} )) ] ) (lemma-equ4 {a} {b} {c} {d} f g h' ) ] + cong-γ1 {a} {_} {c} {d} {f} {g} {h} {h'} h=h' {e} = let open ≈-Reasoning (A) in begin k (eqa f g ) {d} ( A [ h o (equalizer ( eqa (A [ f o h ] ) (A [ g o h ] ))) ] ) (lemma-equ4 {a} {b} {c} {d} f g h ) ≈⟨ uniqueness (eqa f g) ( begin - {!!} o {!!} - ≈⟨ {!!} ⟩ + e o ( k (eqa f f {e}) (id1 A a) (f1=f1 f) o h) + ≈⟨ assoc ⟩ + (e o k (eqa f f {e}) (id1 A a) (f1=f1 f)) o h + ≈⟨ car ( ek=h (eqa f f {e})) ⟩ + id1 A a o h + ≈⟨ idL ⟩ + h + ≈↑⟨ idR ⟩ + h o (id1 A d ) + ≈⟨⟩ h o equalizer (eqa ( f o h ) ( g o h )) ∎ )⟩ - {!!} o {!!} - ≈↑⟨ uniqueness (eqa f g) {!!} ⟩ + k (eqa f f {e}) (id1 A a) (f1=f1 f) o h + ≈⟨ cdr h=h' ⟩ + k (eqa f f {e}) (id1 A a) (f1=f1 f) o h' + ≈↑⟨ uniqueness (eqa f g) ( begin + e o ( k (eqa f f {e}) (id1 A a) (f1=f1 f) o h') + ≈⟨ assoc ⟩ + (e o k (eqa f f {e}) (id1 A a) (f1=f1 f)) o h' + ≈⟨ car ( ek=h (eqa f f {e})) ⟩ + id1 A a o h' + ≈⟨ idL ⟩ + h' + ≈↑⟨ idR ⟩ + h' o (id1 A d ) + ≈⟨⟩ + h' o equalizer (eqa ( f o h' ) ( g o h' )) + ∎ )⟩ k (eqa f g ) {d} ( A [ h' o (equalizer ( eqa (A [ f o h' ] ) (A [ g o h' ] ))) ] ) (lemma-equ4 {a} {b} {c} {d} f g h' ) ∎ cong-δ1 : {a b c : Obj A} {e : Hom A c a } {f f' : Hom A a b} → A [ f ≈ f' ] → A [ k (eqa {a} {b} {c} f f {e} ) (id1 A a) (lemma-equ2 f) ≈