changeset 25:8117bafdec7a

on going
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Fri, 12 Jul 2013 20:32:19 +0900
parents 171c31acf78e
children ad62c87659ef
files nat.agda
diffstat 1 files changed, 27 insertions(+), 2 deletions(-) [+]
line wrap: on
line diff
--- a/nat.agda	Fri Jul 12 18:58:16 2013 +0900
+++ b/nat.agda	Fri Jul 12 20:32:19 2013 +0900
@@ -288,10 +288,35 @@
      join k d h ( A [ Trans μ c o A [ FMap T g o f ] ] )
   ≈⟨ refl-hom ⟩
      A [ Trans μ d  o A [ FMap T h  o  A [ Trans μ c o A [ FMap T g  o f ] ] ] ]
+   ≈⟨ cdr-eq ( Trans μ d ) ( cdr-eq ( FMap T h ) ( assoc )) ⟩
+     A [ Trans μ d  o A [ FMap T h  o  A [ A [ Trans μ c o  FMap T g ]  o f ] ] ]
+   ≈⟨ assoc  ⟩    ---   A [ f x A [ g x h ] ] = A [ A [ f x g ] x h ]
+     A [     A [ Trans μ d o  FMap T h ] o  A [ A [ Trans μ c o  FMap T g ]  o f ] ]
+   ≈⟨ assoc  ⟩
+     A [ A [ A [ Trans μ d o      FMap T h ] o  A [ Trans μ c  o  FMap T g ] ] o f ]
+   ≈⟨ car-eq f (sym assoc) ⟩
+     A [ A [ Trans μ d o  A [ FMap T h     o  A [ Trans μ c    o  FMap T g ] ] ] o f ]
+   ≈⟨ car-eq f ( cdr-eq ( Trans μ d ) (assoc) ) ⟩
+     A [ A [ Trans μ d o  A [ A [ FMap T h o      Trans μ c ]  o  FMap T g ]   ] o f ]
+   ≈⟨ car-eq f assoc ⟩
+     A [ A [ A [ Trans μ d o  A [ FMap T h   o  Trans μ c ] ]  o  FMap T g ] o f ]
+--   ≈⟨ car-eq f (cdr-eq  ( Trans μ d ) ( sym ( nat A μ))) ⟩
+   ≈⟨ car-eq f (car-eq ( FMap T g) ( cdr-eq  ( Trans μ d ) ( begin 
+           {!!}
+       ≈⟨ {!!} ⟩
+           {!!}
+        ∎ 
+   )))  ⟩
+      A [ A [ A [ Trans μ d  o  A [ Trans μ ( FObj T d)    o  FMap T (  FMap T h ) ] ]  o FMap T g ]  o f ]
    ≈⟨ {!!} ⟩
---   ≈⟨ cdr-eq  ( Trans μ d ) ( nat A μ) ⟩
+     A [ A [ Trans μ d  o  A [ A [ Trans μ ( FObj T d)     o FMap T (  FMap T h ) ]   o FMap T g ] ]   o f ]
+   ≈⟨ car-eq f ( cdr-eq ( Trans μ d ) (sym assoc) ) ⟩
+     A [ A [ Trans μ d  o  A [ Trans μ ( FObj T d)     o A [ FMap T (  FMap T h ) o FMap T g ] ] ]   o f ]
+   ≈⟨ car-eq f ( cdr-eq ( Trans μ d) (cdr-eq  (Trans μ ( FObj T d) ) (sym (distr T )))) ⟩
+     A [ A [ Trans μ d  o  A [ Trans μ ( FObj T d)     o FMap T ( A [ FMap T h  o g ] ) ] ]   o f ]
+   ≈⟨ car-eq f assoc ⟩
      A [ A [ A [ Trans μ d  o  Trans μ ( FObj T d)   ]  o FMap T ( A [ FMap T h  o g ] ) ]    o f ]
-   ≈⟨  ⟩
+   ≈⟨ car-eq f ( car-eq  (FMap T ( A [ FMap T h  o g ] )) ( IsMonad.assoc ( isMonad m ))) ⟩
      A [ A [ A [ Trans μ d  o    FMap T ( Trans μ d) ]  o FMap T ( A [ FMap T h  o g ] ) ]    o f ]
    ≈⟨ car-eq f (sym assoc) ⟩
      A [ A [ Trans μ d  o  A   [ FMap T ( Trans μ d )   o FMap T ( A [ FMap T h  o g ] ) ] ]  o f ]