Mercurial > hg > Members > kono > Proof > category
changeset 506:817093714fd5
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 17 Mar 2017 11:53:53 +0900 |
parents | 1f47d14533d0 |
children | c1c12e5a82ad |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 13 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Fri Mar 17 10:43:32 2017 +0900 +++ b/SetsCompleteness.agda Fri Mar 17 11:53:53 2017 +0900 @@ -54,21 +54,24 @@ open Functor open NTrans -record Slimit { c₂ } ( ΓObj : Obj (Sets { c₂ }) → Obj (Sets { c₂ }) ) ( ΓMap : {A B : Obj Sets} → Hom Sets A B → Hom Sets (ΓObj A) ( ΓObj B )) - : Set c₂ where - -- field - -- tlimit : Obj Sets - -- tmap : (A : Obj Sets) → Hom Sets ? (ΓObj A) - -- tcommute : {a b : Obj Sets} {f : Hom Sets a b} → Sets [ Sets [ ΓMap f o tmap a ] ≈ Sets [ tmap b o id1 Sets tlimit ] ] +record Slimit { c₂ } (I : Set c₂ ) ( ΓObj : I → Set c₂ ) + ( ΓMap : ( f : I → I ) → Set c₂ → Set c₂ ) : Set c₂ where + field + sobj : I + bb : ΓObj sobj + cc : I → I + ec : ΓMap cc I + dc : ΓObj sobj → I open Slimit SetsLimit : { c₂ : Level} + ( I : Set c₂ ) ( ΓObj' : I → Set c₂ )( ΓMap' : { f : I → I } → Set c₂ → Set c₂ ) ( ΓObj : Obj Sets → Obj Sets ) ( ΓMap : {A B : Obj Sets} → Hom Sets A B → Hom Sets (ΓObj A) ( ΓObj B )) ( Γ : IsFunctor (Sets { c₂}) (Sets { c₂}) ΓObj ΓMap ) → Limit Sets Sets ( record { FObj = ΓObj ; FMap = ΓMap ; isFunctor = Γ } ) -SetsLimit { c₂} ΓObj ΓMap Γ = record { - a0 = Slimit ΓObj ΓMap +SetsLimit { c₂} I ΓObj' ΓMap' ΓObj ΓMap Γ = record { + a0 = Slimit I ΓObj' ΓMap' ; t0 = record { TMap = tmap ; isNTrans = record { commute = tcommute } } ; isLimit = record { limit = {!!} @@ -76,9 +79,9 @@ ; limit-uniqueness = {!!} } } where - tmap : (a : Obj Sets) → Hom Sets (Slimit ΓObj ΓMap) (ΓObj a) + tmap : (a : Obj Sets) → Hom Sets (Slimit I {!!} {!!}) (ΓObj a) tmap a _ = {!!} - tcommute : {a b : Obj Sets} {f : Hom Sets a b} → Sets [ Sets [ ΓMap f o tmap a ] ≈ Sets [ tmap b o id1 Sets (Slimit ΓObj ΓMap) ] ] + tcommute : {a b : Obj Sets} {f : Hom Sets a b} → Sets [ Sets [ ΓMap f o tmap a ] ≈ Sets [ tmap b o id1 Sets (Slimit I {!!} {!!}) ] ] tcommute {a} {b} {f} = {!!}