Mercurial > hg > Members > kono > Proof > category
changeset 68:829e0698f87f
join implicit parameter
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 25 Jul 2013 13:56:16 +0900 |
parents | e75436075bf0 |
children | 84a150c980ce |
files | cat-utility.agda nat.agda |
diffstat | 2 files changed, 11 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/cat-utility.agda Thu Jul 25 13:08:49 2013 +0900 +++ b/cat-utility.agda Thu Jul 25 13:56:16 2013 +0900 @@ -118,7 +118,7 @@ monad : Monad A T η μ monad = M -- g ○ f = μ(c) T(g) f - join : { a b : Obj A } → ( c : Obj A ) → + join : { a b : Obj A } → { c : Obj A } → ( Hom A b ( FObj T c )) → ( Hom A a ( FObj T b)) → Hom A a ( FObj T c ) - join c g f = A [ TMap μ c o A [ FMap T g o f ] ] + join {_} {_} {c} g f = A [ TMap μ c o A [ FMap T g o f ] ]
--- a/nat.agda Thu Jul 25 13:08:49 2013 +0900 +++ b/nat.agda Thu Jul 25 13:56:16 2013 +0900 @@ -93,13 +93,13 @@ ( f : Hom A a ( FObj T b) ) ( m : Monad A T η μ ) { k : Kleisli A T η μ m} - → A [ join k b (TMap η b) f ≈ f ] + → A [ join k (TMap η b) f ≈ f ] Lemma7 c {T} η b f m {k} = let open ≈-Reasoning (c) μ = mu ( monad k ) in begin - join k b (TMap η b) f + join k (TMap η b) f ≈⟨ refl-hom ⟩ c [ TMap μ b o c [ FMap T ((TMap η b)) o f ] ] ≈⟨ IsCategory.associative (Category.isCategory c) ⟩ @@ -119,10 +119,10 @@ ( f : Hom A a ( FObj T b) ) ( m : Monad A T η μ ) ( k : Kleisli A T η μ m) - → A [ join k b f (TMap η a) ≈ f ] + → A [ join k f (TMap η a) ≈ f ] Lemma8 c T η a b f m k = begin - join k b f (TMap η a) + join k f (TMap η a) ≈⟨ refl-hom ⟩ c [ TMap μ b o c [ FMap T f o (TMap η a) ] ] ≈⟨ cdr ( nat η ) ⟩ @@ -148,12 +148,12 @@ ( h : Hom A c ( FObj T d) ) ( m : Monad A T η μ ) { k : Kleisli A T η μ m} - → A [ join k d h (join k c g f) ≈ join k d ( join k d h g) f ] + → A [ join k h (join k g f) ≈ join k ( join k h g) f ] Lemma9 A {T} {η} {μ} {a} {b} {c} {d} f g h m {k} = begin - join k d h (join k c g f) + join k h (join k g f) ≈⟨⟩ - join k d h ( ( TMap μ c o ( FMap T g o f ) ) ) + join k h ( ( TMap μ c o ( FMap T g o f ) ) ) ≈⟨ refl-hom ⟩ ( TMap μ d o ( FMap T h o ( TMap μ c o ( FMap T g o f ) ) ) ) ≈⟨ cdr ( cdr ( assoc )) ⟩ @@ -198,9 +198,9 @@ ≈⟨ cdr ( car ( sym ( distr T ))) ⟩ ( TMap μ d o ( FMap T ( ( ( TMap μ d ) o ( FMap T h o g ) ) ) o f ) ) ≈⟨ refl-hom ⟩ - join k d ( ( TMap μ d o ( FMap T h o g ) ) ) f + join k ( ( TMap μ d o ( FMap T h o g ) ) ) f ≈⟨ refl-hom ⟩ - join k d ( join k d h g) f + join k ( join k h g) f ∎ where open ≈-Reasoning (A) -- Kleisli-join : {!!}