Mercurial > hg > Members > kono > Proof > category
changeset 519:844328b49d5d
try hom equality in uniquness
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 21 Mar 2017 16:28:34 +0900 |
parents | 52d30ad7f652 |
children | 5b4a794f3784 |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 33 insertions(+), 34 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Tue Mar 21 15:15:46 2017 +0900 +++ b/SetsCompleteness.agda Tue Mar 21 16:28:34 2017 +0900 @@ -124,47 +124,47 @@ fhy=ghy d h y fh=gh = cong ( λ f → f y ) fh=gh xequ : (x : a ) → { fx=gx : f x ≡ g x } → sequ a b f g xequ x { fx=gx } = elem x fx=gx + elem-cong : {x x' : a } → ( x ≡ x' ) → ( eq eq' : f x ≡ g x ) → ( elem x eq ) ≡ ( elem x' eq' ) + elem-cong refl eq eq' = {!!} + k-cong : {d : Obj Sets} {h : Hom Sets d a} → {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ] } → + {h' : Hom Sets d a} → Sets [ h ≈ h' ] → {fh'=gh' : Sets [ Sets [ f o h' ] ≈ Sets [ g o h' ] ] } → + Sets [ k h fh=gh ≈ k h' fh'=gh' ] + k-cong {d} {h} {fh=gh} {h'} h=h' {fh'=gh'} = extensionality Sets ( λ y → begin + k h fh=gh y + ≡⟨⟩ + elem (h y) ( fhy=ghy d h y fh=gh ) + ≡⟨ {!!} ⟩ + elem (h' y) ( fhy=ghy d h' y fh'=gh' ) + ≡⟨⟩ + k h' fh'=gh' y + ∎ ) where + open import Relation.Binary.PropositionalEquality + open ≡-Reasoning + lemma3 : {d : Obj Sets} {k' : Hom Sets d (sequ a b f g)} → Sets [ Sets [ f o Sets [ (λ e → equ e) o k' ] ] ≈ + Sets [ g o Sets [ (λ e → equ e) o k' ] ] ] + lemma3 {d} {k'} = begin + Sets [ f o Sets [ (λ e → equ e) o k' ] ] + ≈⟨ assoc ⟩ + Sets [ Sets [ f o (λ e → equ e) ] o k' ] + ≈⟨ car {!!} ⟩ + Sets [ Sets [ g o (λ e → equ e) ] o k' ] + ≈↑⟨ assoc ⟩ + Sets [ g o Sets [ (λ e → equ e) o k' ] ] + ∎ where + open ≈-Reasoning Sets lemma1 : ( e : sequ a b f g ) → ( z : sequ a b f g ) → elem (equ z) (fe=ge0 z) ≡ z lemma1 ( elem x eq ) (elem x' eq' ) = refl lemma2 : { e : sequ a b f g } → ( λ e → elem (equ e) (fe=ge0 e ) ) ≡ ( λ e → e ) lemma2 {e} = extensionality Sets ( λ z → lemma1 e z ) - lemma3 : {d : Obj Sets} ( e : sequ a b f g → a ) → ( y : d ) → (k' : Hom Sets d (sequ a b f g)) → f ( e (k' y) ) ≡ g ( e (k' y)) - lemma3 {d} e y k' = {!!} - uniquness1 : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → ( y : d ) → - Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → k h fh=gh y ≡ k' y - uniquness1 {d} {h} {fh=gh} {k'} y ek'=h = - begin - k h fh=gh y - ≡⟨⟩ - elem (h y) (fhy=ghy d h y fh=gh ) - ≡⟨⟩ - xequ (h y ) {fhy=ghy d h y fh=gh } - ≡⟨ sym ( Category.cong (λ ek' → xequ (ek' y ) {{!!}} ) ek'=h ) ⟩ - xequ ( ( λ e → equ e ) ( k' y ) ) {fe=ge0 (k' y)} - ≡⟨⟩ - ( λ e → xequ ( equ e ) {fe=ge0 e } ) ( k' y ) - ≡⟨⟩ - ( λ e → elem (equ e) (fe=ge0 e )) ( k' y ) - ≡⟨ Category.cong ( λ f → f ( k' y ) ) lemma2 ⟩ - ( λ e → e ) ( k' y ) - ≡⟨⟩ - k' y - ∎ - where - open import Relation.Binary.PropositionalEquality - open ≡-Reasoning uniqueness : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → Sets [ k h fh=gh ≈ k' ] - uniqueness {d} {h} {fh=gh} {k'} ek'=h = extensionality Sets ( λ y → uniquness1 {d} {h} {fh=gh}{k'} y ek'=h ) - uniqueness0 : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → - Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → Sets [ k h fh=gh ≈ k' ] - uniqueness0 {d} {h} {fh=gh} {k'} ek'=h = begin + uniqueness {d} {h} {fh=gh} {k'} ek'=h = begin k h fh=gh - ≈⟨ {!!} ⟩ - k ( Sets [ (λ e → equ e) o k' ] ) {!!} + ≈↑⟨ k-cong ek'=h ⟩ + k ( Sets [ (λ e → equ e) o k' ] ) ( lemma3 {d} {k'} ) ≈⟨⟩ Sets [ ( λ e → elem (equ e) (fe=ge0 e )) o k' ] - ≈⟨ {!!} ⟩ + ≈⟨ car ( lemma2 {{!!}} ) ⟩ Sets [ ( λ e → e ) o k' ] ≈⟨⟩ k' @@ -191,8 +191,7 @@ open ΓMap fmap : { c₂ : Level} {a b : Set c₂ } → (f : a → b ) → ΓMap f -fmap {a} {b} f = record { map = λ aobj → record { obj = f ( obj aobj ) } } - +fmap {a} {b} f = record { map = λ aobj → record { obj = f ( obj aobj ) } } Γ : { c₂ : Level } → Functor (Sets { c₂}) (Sets { c₂}) Γ { c₂} = record { FObj = ΓObj ; FMap = ( λ f → map (fmap f )) ; isFunctor = record { identity = λ {b} → refl ;