Mercurial > hg > Members > kono > Proof > category
changeset 824:878d8643214f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 02 May 2019 11:54:09 +0900 |
parents | f57c9603d989 |
children | 8f41ad966eaa |
files | CCCGraph.agda |
diffstat | 1 files changed, 47 insertions(+), 60 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph.agda Wed May 01 21:35:03 2019 +0900 +++ b/CCCGraph.agda Thu May 02 11:54:09 2019 +0900 @@ -251,7 +251,7 @@ Cart {c₁} {c₂} {ℓ} = record { Obj = CCCObj {c₁} {c₂} {ℓ} ; Hom = CCCMap - ; _o_ = _・_ + ; _o_ = λ {A} {B} {C} f g → record { cmap = (cmap f) ○ ( cmap g ) ; ccf = λ _ → ccf f ( ccf g (ccc A )) } ; _≈_ = λ {a} {b} f g → cmap f ≃ cmap g ; Id = λ {a} → record { cmap = identityFunctor ; ccf = λ x → x } ; isCategory = record { @@ -263,21 +263,12 @@ ; identityR = λ {x} {y} {f} → let open ≈-Reasoning (CAT) in idR {cat x} {cat y} {cmap f} ; o-resp-≈ = λ {x} {y} {z} {f} {g} {h} {i} → IsCategory.o-resp-≈ ( Category.isCategory CAT) {cat x}{cat y}{cat z} {cmap f} {cmap g} {cmap h} {cmap i} ; associative = λ {a} {b} {c} {d} {f} {g} {h} → let open ≈-Reasoning (CAT) in assoc {cat a} {cat b} {cat c} {cat d} {cmap f} {cmap g} {cmap h} - }} where - cart-refl : {A B : CCCObj {c₁} {c₂} {ℓ} } → { x : CCCMap A B } → {a b : Obj ( cat A ) } → (f : Hom ( cat A ) a b) → [ cat B ] FMap (cmap x) f ~ FMap (cmap x) f - cart-refl {A} {B} {x} {a} {b} f = [_]_~_.refl ( IsFunctor.≈-cong (isFunctor ( cmap x )) - ( IsEquivalence.refl (IsCategory.isEquivalence (Category.isCategory ( cat A ))))) - _・_ : { A B C : CCCObj {c₁} {c₂} {ℓ} } → ( f : CCCMap B C ) → ( g : CCCMap A B ) → CCCMap A C - _・_ {A} {B} {C} f g = record { cmap = F ; ccf = ccmap } where - F : Functor (cat A) (cat C) - F = (cmap f) ○ ( cmap g ) - ccmap : CCC (cat A) → CCC (cat C) - ccmap ca = ccf f ( ccf g (ccc A )) + }} open import discrete open Graph -record GMap {v v' : Level} (x y : Graph {v} {v'} ) : Set (suc v ⊔ v' ) where +record GMap {v v' w w' : Level} (x : Graph {v} {v'} ) (y : Graph {w} {w'} ) : Set (suc (v ⊔ w) ⊔ v' ⊔ w' ) where field vmap : vertex x → vertex y emap : {a b : vertex x} → edge x a b → edge y (vmap a) (vmap b) @@ -286,13 +277,18 @@ open import Relation.Binary.HeterogeneousEquality using (_≅_;refl ) renaming ( sym to ≅-sym ; trans to ≅-trans ; cong to ≅-cong ) -data _=m=_ {v v' : Level} {x y : Graph {v} {v'}} ( f g : GMap x y ) : Set (v ⊔ v' ) where - mrefl : ( vmap f ≡ vmap g ) → ( {a b : vertex x} → { e : edge x a b } → emap f e ≅ emap g e ) → f =m= g +data [_]_==_ {c₁ c₂ } (C : Graph {c₁} {c₂} ) {A B : vertex C} (f : edge C A B) + : ∀{X Y : vertex C} → edge C X Y → Set (suc (c₁ ⊔ c₂ )) where + mrefl : {g : edge C A B} → (eqv : f ≡ g ) → [ C ] f == g + +_=m=_ : ∀ {c₁ c₂ } {C D : Graph {c₁} {c₂} } + → (F G : GMap C D) → Set (suc (c₂ ⊔ c₁)) +_=m=_ {C = C} {D = D} F G = ∀{A B : vertex C} → (f : edge C A B) → [ D ] emap F f == emap G f _&_ : {v v' : Level} {x y z : Graph {v} {v'}} ( f : GMap y z ) ( g : GMap x y ) → GMap x z f & g = record { vmap = λ x → vmap f ( vmap g x ) ; emap = λ x → emap f ( emap g x ) } -Grp : {v v' : Level} → Category (suc (v ⊔ v')) (suc v ⊔ v') (v ⊔ v') +Grp : {v v' : Level} → Category (suc (v ⊔ v')) (suc v ⊔ v') (suc ( v ⊔ v')) Grp {v} {v'} = record { Obj = Graph {v} {v'} ; Hom = GMap {v} {v'} @@ -300,41 +296,36 @@ ; _≈_ = _=m=_ ; Id = record { vmap = λ y → y ; emap = λ f → f } ; isCategory = record { - isEquivalence = λ {A} {B} → ise {v} {v'} {A} {B} - ; identityL = mrefl refl refl - ; identityR = mrefl refl refl + isEquivalence = λ {A} {B} → ise + ; identityL = λ e → mrefl refl + ; identityR = λ e → mrefl refl ; o-resp-≈ = m--resp-≈ - ; associative = mrefl refl refl + ; associative = λ e → mrefl refl }} where - msym : {v v' : Level} {x y : Graph {v} {v'} } { f g : GMap x y } → f =m= g → g =m= f - msym (mrefl refl eq ) = mrefl refl ( ≅-sym eq ) - mtrans : {v v' : Level} {x y : Graph {v} {v'}} { f g h : GMap x y } → f =m= g → g =m= h → f =m= h - mtrans (mrefl refl eq ) (mrefl refl eq1 ) = mrefl refl ( ≅-trans eq eq1 ) - ise : {v v' : Level} {x y : Graph {v} {v'}} → IsEquivalence {_} {v ⊔ v'} {_} ( _=m=_ {v} {v'} {x} {y} ) + msym : {v v' : Level} {x y : Graph {v} {v'} } { f g : GMap x y } → f =m= g → g =m= f + msym {_} {_} {x} {y} f=g f = lemma ( f=g f ) where + lemma : ∀{a b c d} {f : edge y a b} {g : edge y c d} → [ y ] f == g → [ y ] g == f + lemma (mrefl Ff≈Gf) = mrefl (sym Ff≈Gf) + mtrans : {v v' : Level} {x y : Graph {v} {v'} } { f g h : GMap x y } → f =m= g → g =m= h → f =m= h + mtrans {_} {_} {x} {y} f=g g=h f = lemma ( f=g f ) ( g=h f ) where + lemma : ∀{a b c d e f} {p : edge y a b} {q : edge y c d} → {r : edge y e f} → [ y ] p == q → [ y ] q == r → [ y ] p == r + lemma (mrefl eqv) (mrefl eqv₁) = mrefl ( trans eqv eqv₁ ) + ise : {v v' : Level} {x y : Graph {v} {v'}} → IsEquivalence {_} {suc v ⊔ suc v' } {_} ( _=m=_ {v} {v'} {x} {y}) ise = record { - refl = λ {x} → mrefl refl refl + refl = λ f → mrefl refl ; sym = msym ; trans = mtrans } - m--resp-≈ : {v : Level} {A B C : Graph {v} } {f g : GMap A B} {h i : GMap B C} → f =m= g → h =m= i → ( h & f ) =m= ( i & g ) - m--resp-≈ {_} {_} {_} {_} {f} {g} {h} {i} (mrefl refl eq ) (mrefl refl eq1 ) = mrefl refl ( λ {a} {b} {e} → begin - emap h (emap f e) - ≅⟨ ≅-cong ( λ k → emap h k ) eq ⟩ - emap h (emap g e) - ≅⟨ eq1 ⟩ - emap i (emap g e) - ∎ ) - where open Relation.Binary.HeterogeneousEquality.≅-Reasoning - assoc-≈ : {v v' : Level} {A B C D : Graph {v} {v'} } {f : GMap C D} {g : GMap B C} {h : GMap A B} → ( f & ( g & h ) ) =m= ( (f & g ) & h ) - assoc-≈ = mrefl refl refl + m--resp-≈ : {v v' : Level} {A B C : Graph {v} {v'} } + {f g : GMap A B} {h i : GMap B C} → f =m= g → h =m= i → ( h & f ) =m= ( i & g ) + m--resp-≈ {_} {_} {A} {B} {C} {f} {g} {h} {i} f=g h=i e = + lemma (emap f e) (emap g e) (emap i (emap g e)) (f=g e) (h=i ( emap g e )) where + lemma : {a b c d : vertex B } {z w : vertex C } (ϕ : edge B a b) (ψ : edge B c d) (π : edge C z w) → + [ B ] ϕ == ψ → [ C ] (emap h ψ) == π → [ C ] (emap h ϕ) == π + lemma _ _ _ (mrefl refl) (mrefl refl) = mrefl refl --- Forgetful functor -fobj : {c₁ c₂ ℓ : Level} → Obj (Cart {c₁} {c₂} {ℓ} ) → Obj (Grp {c₁} {c₂}) -fobj a = record { vertex = Obj (cat a) ; edge = Hom (cat a) } -fmap : {c₁ c₂ ℓ : Level} → {a b : Obj (Cart {c₁} {c₂} {ℓ} ) } → Hom (Cart {c₁} {c₂} {ℓ} ) a b → Hom (Grp {c₁} {c₂}) ( fobj a ) ( fobj b ) -fmap f = record { vmap = FObj (cmap f) ; emap = FMap (cmap f) } - ≃-cong : {c₁ c₂ ℓ : Level} (B : Category c₁ c₂ ℓ ) → {a b a' b' : Obj B } → { f f' : Hom B a b } → { g g' : Hom B a' b' } @@ -349,33 +340,29 @@ g' ∎ ) +fobj : {c₁ c₂ ℓ : Level} → Obj (Cart {c₁} {c₂} {ℓ} ) → Obj (Grp {c₁} {c₂}) +fobj a = record { vertex = Obj (cat a) ; edge = Hom (cat a) } +fmap : {c₁ c₂ ℓ : Level} → {a b : Obj (Cart {c₁} {c₂} {ℓ} ) } → Hom (Cart {c₁} {c₂} {ℓ} ) a b → Hom (Grp {c₁} {c₂}) ( fobj a ) ( fobj b ) +fmap f = record { vmap = FObj (cmap f) ; emap = FMap (cmap f) } UX : {c₁ c₂ ℓ : Level} → ( ≈-to-≡ : (A : Category c₁ c₂ ℓ ) → {a b : Obj A} → {f g : Hom A a b} → A [ f ≈ g ] → f ≡ g ) → Functor (Cart {c₁} {c₂} {ℓ} ) (Grp {c₁} {c₂}) FObj (UX {c₁} {c₂} {ℓ} ≈-to-≡ ) a = fobj a FMap (UX ≈-to-≡) f = fmap f isFunctor (UX {c₁} {c₂} {ℓ} ≈-to-≡) = isf where + -- if we don't need ≈-cong ( i.e. f ≈ g → UX f =m= UX g ), all lemmas are not necessary open import HomReasoning - lemma0 : {A B : Category c₁ c₂ ℓ } { f g : Functor A B } → {a b : Obj B} → [_]_~_ B (id1 B a) (id1 B b) → a ≡ b - lemma0 {A} {B} {f} {g} (refl eqv) = refl - lemma03 : {A B : Category c₁ c₂ ℓ } { f g : Functor A B } → {a : Obj A} → [_]_~_ B (FMap f ( id1 A a)) (FMap g ( id1 A a)) → FObj f a ≡ FObj g a - lemma03 {A} {B} {f} {g} eq = lemma0 {A} {B} {f} {g} ( ≃-cong B eq (IsFunctor.identity (Functor.isFunctor (f)))(IsFunctor.identity (Functor.isFunctor (g))) ) - lemma01 : {A B : Category c₁ c₂ ℓ } { f g : Functor A B } → {a : Obj A} → f ≃ g → FObj f a ≡ FObj g a - lemma01 {A} {B} {f} {g} {a} eq = lemma03 {A} {B} {f} {g} (eq (id1 A a)) - lemma1 : {A B : Obj (Cart {c₁} {c₂} {ℓ}) } { f g : Hom (Cart {c₁} {c₂} {ℓ}) A B } - → (Cart {c₁} {c₂} {ℓ}) [ f ≈ g ] → vmap (fmap f) ≡ vmap (fmap g) - lemma1 {a} {b} {f} {g} eq = extensionality Sets ( λ z → lemma01 {cat a} {cat b} {cmap f} {cmap g} eq ) - lemma20 : {A B : Category c₁ c₂ ℓ } {a b : Obj A} → ( e : Hom A a b ) → ( g : Functor A B ) → ( f : Hom A a b → Hom B (FObj g a) (FObj g b) ) - → B [ f e ≈ FMap g e ] → f e ≡ FMap g e - lemma20 {_} {B} e g f eq = ≈-to-≡ B eq - lemma2 : {A B : Obj (Cart {c₁} {c₂} {ℓ}) } { f g : Hom (Cart {c₁} {c₂} {ℓ}) A B} → - (Cart {c₁} {c₂} {ℓ}) [ f ≈ g ] → vmap (fmap f) ≡ vmap (fmap g) → {a b : vertex (fobj A)} {e : edge (fobj A) a b} → emap (fmap f) e ≅ emap (fmap g) e - lemma2 {A} {B} {f} {g} eq refl {a} {b} {e} with ( eq e ) - ... | refl {h} eqv = Relation.Binary.HeterogeneousEquality.≡-to-≅ ( lemma20 e (cmap g) (FMap (cmap f)) eqv ) isf : IsFunctor (Cart {c₁} {c₂} {ℓ} ) (Grp {c₁} {c₂}) fobj fmap - IsFunctor.identity isf = mrefl refl refl - IsFunctor.distr isf = mrefl refl refl - IsFunctor.≈-cong isf {a} {b} {f} {g} eq = mrefl (lemma1 {a} {b} {f} {g} eq ) (lemma2 {a} {b} {f} {g} eq (lemma1 {a} {b} {f} {g} eq )) + IsFunctor.identity isf {a} {b} {f} e = mrefl refl + IsFunctor.distr isf f = mrefl refl + IsFunctor.≈-cong isf {a} {b} {f} {g} eq {x} {y} e = lemma (extensionality Sets ( λ z → lemma4 ( + ≃-cong (cat b) (eq (id1 (cat a) z)) (IsFunctor.identity (Functor.isFunctor (cmap f))) (IsFunctor.identity (Functor.isFunctor (cmap g))) + ))) (eq e) where + lemma4 : {x y : vertex (fobj b) } → [_]_~_ (cat b) (id1 (cat b) x) (id1 (cat b) y) → x ≡ y + lemma4 (refl eqv) = refl + lemma : vmap (fmap f) ≡ vmap (fmap g) → [ cat b ] FMap (cmap f) e ~ FMap (cmap g) e → [ fobj b ] emap (fmap f) e == emap (fmap g) e + lemma refl (refl eqv) = mrefl ( ≈-to-≡ (cat b) eqv ) + --- --- open ccc-from-graph