Mercurial > hg > Members > kono > Proof > category
changeset 683:88e8a1290dc4
clean up
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 08 Nov 2017 00:05:50 +0900 |
parents | 50a01df1169a |
children | 5d9d7c2f2718 |
files | pullback.agda |
diffstat | 1 files changed, 23 insertions(+), 21 deletions(-) [+] |
line wrap: on
line diff
--- a/pullback.agda Tue Nov 07 23:48:46 2017 +0900 +++ b/pullback.agda Wed Nov 08 00:05:50 2017 +0900 @@ -30,9 +30,6 @@ open IsEqualizer open IsProduct --- ( A [ π1 o equalizer1 ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) ) ] ) --- ( A [ π2 o equalizer1 ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) ) ] ) - pullback-from : {a b c : Obj A} ( f : Hom A a c ) ( g : Hom A b c ) ( eqa : {a b : Obj A} → (f g : Hom A a b) → Equalizer A f g ) @@ -381,9 +378,11 @@ e : Hom A d p0 e = equalizer equ-ε equ = isEqualizer equ-ε + -- projection of the product of Obj I proj : (i : Obj I) → Hom A p0 (FObj Γ i) proj = pi ( prod (FObj Γ) ) prodΓ = isIProduct ( prod (FObj Γ) ) + -- projection of the product of Hom I mu : {j k : Obj I} → (u : Hom I j k ) → Hom A (iprod (prod Fcod)) (Fcod (Homprod u)) mu u = pi (prod Fcod ) (Homprod u) limit-ε : NTrans I A (K A I (equalizer-c equ-ε ) ) Γ @@ -418,20 +417,23 @@ ≈⟨⟩ tmap k o FMap (K A I d) u ∎ + -- an arrow to our product of Obj I ( is an equalizer because of commutativity of t ) + h : {a : Obj A} → (t : NTrans I A (K A I a) Γ ) → Hom A a p0 + h t = iproduct prodΓ (TMap t) fh=gh : (a : Obj A) → (t : NTrans I A (K A I a) Γ ) → - A [ A [ g o iproduct prodΓ (TMap t) ] ≈ A [ f o iproduct prodΓ (TMap t) ] ] + A [ A [ g o h t ] ≈ A [ f o h t ] ] fh=gh a t = let open ≈-Reasoning (A) in begin - g o iproduct prodΓ (TMap t) + g o h t ≈↑⟨ ip-uniqueness (isIProduct (prod Fcod)) ⟩ - iproduct (isIProduct (prod Fcod)) (λ u → pi (prod Fcod) u o ( g o iproduct prodΓ (TMap t) )) + iproduct (isIProduct (prod Fcod)) (λ u → pi (prod Fcod) u o ( g o h t )) ≈⟨ ip-cong (isIProduct (prod Fcod)) ( λ u → begin - pi (prod Fcod) u o ( g o iproduct prodΓ (TMap t) ) + pi (prod Fcod) u o ( g o h t ) ≈⟨ assoc ⟩ - ( pi (prod Fcod) u o g ) o iproduct prodΓ (TMap t) + ( pi (prod Fcod) u o g ) o h t ≈⟨ car (pif=q (isIProduct (prod Fcod ))) ⟩ - (FMap Γ (hom u) o pi (prod (FObj Γ)) (hom-j u) ) o iproduct prodΓ (TMap t) + (FMap Γ (hom u) o pi (prod (FObj Γ)) (hom-j u) ) o h t ≈↑⟨ assoc ⟩ - FMap Γ (hom u) o (pi (prod (FObj Γ)) (hom-j u) o iproduct prodΓ (TMap t) ) + FMap Γ (hom u) o (pi (prod (FObj Γ)) (hom-j u) o h t ) ≈⟨ cdr ( pif=q prodΓ ) ⟩ FMap Γ (hom u) o TMap t (hom-j u) ≈⟨ IsNTrans.commute (isNTrans t) ⟩ @@ -439,29 +441,29 @@ ≈⟨ idR ⟩ TMap t (hom-k u) ≈↑⟨ pif=q prodΓ ⟩ - pi (prod (FObj Γ)) (hom-k u) o iproduct prodΓ (TMap t) + pi (prod (FObj Γ)) (hom-k u) o h t ≈↑⟨ car (pif=q (isIProduct (prod Fcod ))) ⟩ - (pi (prod Fcod) u o f ) o iproduct prodΓ (TMap t) + (pi (prod Fcod) u o f ) o h t ≈↑⟨ assoc ⟩ - pi (prod Fcod) u o ( f o iproduct prodΓ (TMap t) ) + pi (prod Fcod) u o ( f o h t ) ∎ ) ⟩ - iproduct (isIProduct (prod Fcod)) (λ u → pi (prod Fcod) u o ( f o iproduct prodΓ (TMap t)) ) + iproduct (isIProduct (prod Fcod)) (λ u → pi (prod Fcod) u o ( f o h t )) ≈⟨ ip-uniqueness (isIProduct (prod Fcod)) ⟩ - f o iproduct prodΓ (TMap t) + f o h t ∎ limit1 : (a : Obj A) → NTrans I A (K A I a) Γ → Hom A a d - limit1 a t = k equ (iproduct prodΓ (TMap t) ) ( fh=gh a t ) + limit1 a t = k equ (h t) ( fh=gh a t ) t0f=t1 : {a : Obj A} {t : NTrans I A (K A I a) Γ} {i : Obj I} → A [ A [ TMap limit-ε i o limit1 a t ] ≈ TMap t i ] t0f=t1 {a} {t} {i} = let open ≈-Reasoning (A) in begin TMap limit-ε i o limit1 a t ≈⟨⟩ - ( ( proj i ) o e ) o k equ (iproduct prodΓ (TMap t) ) (fh=gh a t) + ( ( proj i ) o e ) o k equ (h t) (fh=gh a t) ≈↑⟨ assoc ⟩ - proj i o ( e o k equ (iproduct prodΓ (TMap t) ) (fh=gh a t ) ) + proj i o ( e o k equ (h t) (fh=gh a t ) ) ≈⟨ cdr ( ek=h equ) ⟩ - proj i o iproduct prodΓ (TMap t) + proj i o h t ≈⟨ pif=q prodΓ ⟩ TMap t i ∎ @@ -471,7 +473,7 @@ limit-uniqueness1 {a} {t} {f} lim=t = let open ≈-Reasoning (A) in begin limit1 a t ≈⟨⟩ - k equ (iproduct prodΓ (TMap t) ) (fh=gh a t) + k equ (h t) (fh=gh a t) ≈⟨ IsEqualizer.uniqueness equ ( begin e o f ≈↑⟨ ip-uniqueness prodΓ ⟩ @@ -483,7 +485,7 @@ ≈⟨ lim=t {i} ⟩ TMap t i ∎ ) ⟩ - iproduct prodΓ (TMap t) + h t ∎ ) ⟩ f ∎