Mercurial > hg > Members > kono > Proof > category
changeset 980:8ab4307d9337
... Nat
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 03 Mar 2021 04:30:18 +0900 |
parents | 8e97363859ce |
children | 0e417c508096 |
files | src/CCC.agda src/ToposEx.agda |
diffstat | 2 files changed, 78 insertions(+), 29 deletions(-) [+] |
line wrap: on
line diff
--- a/src/CCC.agda Wed Mar 03 00:58:24 2021 +0900 +++ b/src/CCC.agda Wed Mar 03 04:30:18 2021 +0900 @@ -224,5 +224,6 @@ field TNat : NatD A 1 gNat : (nat : NatD A 1 ) → Hom A (Nat TNat) (Nat nat) + nat-unique : (nat : NatD A 1 ) → {g : Hom A (Nat TNat) (Nat nat) } → A [ g ≈ gNat nat ] isToposN : IsToposNat A 1 TNat gNat
--- a/src/ToposEx.agda Wed Mar 03 00:58:24 2021 +0900 +++ b/src/ToposEx.agda Wed Mar 03 04:30:18 2021 +0900 @@ -3,7 +3,7 @@ open import Category open import cat-utility open import HomReasoning -module ToposEx {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (c : CCC A) (t : Topos A c ) where +module ToposEx {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (c : CCC A) (t : Topos A c ) (n : ToposNat A (CCC.1 c)) where open Topos open Equalizer @@ -151,42 +151,90 @@ < id1 A b o k , id1 A b o k > ≈⟨ IsCCC.π-cong isCCC idL idL ⟩ < k , k > ∎ - N : (n : ToposNat A 1 ) → Obj A - N n = NatD.Nat (ToposNat.TNat n) + open NatD + open ToposNat n - record prop33 (n : ToposNat A 1 ) : Set ( suc c₁ ⊔ suc c₂ ⊔ suc ℓ ) where + N : Obj A + N = Nat TNat + + record prop33 {a : Obj A} (f : Hom A 1 a ) ( h : Hom A (N ∧ a) a ) : Set ( suc c₁ ⊔ suc c₂ ⊔ suc ℓ ) where field - g : {a : Obj A} (f : Hom A 1 a ) ( h : Hom A (N n ∧ a) a ) → Hom A (N n) a - g0=f : {a : Obj A} (f : Hom A 1 a ) ( h : Hom A (N n ∧ a) a ) → A [ A [ g f h o NatD.nzero (ToposNat.TNat n) ] ≈ f ] - gs=h : {a : Obj A} (f : Hom A 1 a ) ( h : Hom A (N n ∧ a) a ) → A [ A [ g f h o NatD.nsuc (ToposNat.TNat n) ] ≈ A [ h o < id1 A _ , g f h > ] ] - g-cong : {a : Obj A} {f f' : Hom A 1 a } { h h' : Hom A (N n ∧ a) a } → A [ f ≈ f' ] → A [ h ≈ h' ] → A [ g f h ≈ g f' h' ] - - p33 : (n : ToposNat A 1 ) → prop33 n - p33 = {!!} + g : Hom A N a + g0=f : A [ A [ g o nzero TNat ] ≈ f ] + gs=h : A [ A [ g o nsuc TNat ] ≈ A [ h o < id1 A _ , g > ] ] - cor33 : (n : ToposNat A 1 ) - → coProduct A 1 ( NatD.Nat (ToposNat.TNat n) ) -- N ≅ N + 1 - cor33 n = record { - coproduct = N n - ; κ1 = NatD.nzero (ToposNat.TNat n) - ; κ2 = NatD.nsuc (ToposNat.TNat n) + p33 : {a : Obj A} (z : Hom A 1 a ) ( h : Hom A (N ∧ a) a ) → prop33 z h + p33 {a} z h = record { + g = g + ; g0=f = iii + ; gs=h = v + } where + xnat : NatD A 1 + xnat = record { Nat = N ∧ a ; nzero = < nzero TNat , z > ; nsuc = < nsuc TNat o π , h > } + fg : Hom A N (N ∧ a ) + fg = gNat xnat + f : Hom A N N + f = π o fg + g : Hom A N a + g = π' o fg + ig : {i : Hom A N N } → i ≈ id1 A N + ig {i} = begin + i ≈⟨ nat-unique TNat ⟩ + gNat TNat ≈↑⟨ nat-unique TNat ⟩ + id1 A _ ∎ + i : f o nzero TNat ≈ nzero TNat + i = begin + f o nzero TNat ≈⟨ car ig ⟩ id1 A _ o nzero TNat ≈⟨ idL ⟩ + nzero TNat ∎ + ii : f o nsuc TNat ≈ nsuc TNat o f + ii = begin + f o nsuc TNat ≈⟨ car ig ⟩ id1 A _ o nsuc TNat ≈⟨ idL ⟩ nsuc TNat ≈↑⟨ idR ⟩ nsuc TNat o id1 A _ ≈↑⟨ cdr ig ⟩ + nsuc TNat o f ∎ + iii : g o nzero TNat ≈ z + iii = begin + g o nzero TNat ≈⟨⟩ (π' o gNat xnat ) o nzero TNat ≈↑⟨ assoc ⟩ + π' o ( gNat xnat o nzero TNat) ≈⟨ cdr (IsToposNat.izero isToposN xnat) ⟩ + π' o < nzero TNat , z > ≈⟨ IsCCC.e3b isCCC ⟩ + z ∎ + iv : g o nsuc TNat ≈ h o < f , g > + iv = begin + g o nsuc TNat ≈⟨⟩ + (π' o gNat xnat) o nsuc TNat ≈↑⟨ assoc ⟩ + π' o (gNat xnat o nsuc TNat ) ≈⟨ cdr (IsToposNat.isuc isToposN xnat) ⟩ + π' o (nsuc xnat o gNat xnat ) ≈⟨ assoc ⟩ + (π' o nsuc xnat ) o gNat xnat ≈⟨ car (IsCCC.e3b isCCC) ⟩ + h o gNat xnat ≈↑⟨ cdr (IsCCC.e3c isCCC) ⟩ + h o < π o fg , π' o fg > ≈⟨⟩ + h o < f , g > ∎ + v : A [ A [ g o nsuc TNat ] ≈ A [ h o < id1 A N , g > ] ] + v = begin + g o nsuc TNat ≈⟨ iv ⟩ + h o < f , g > ≈⟨ cdr ( IsCCC.π-cong isCCC ig refl-hom) ⟩ + h o < id1 A N , g > ∎ + + + cor33 : coProduct A 1 (Nat TNat ) -- N ≅ N + 1 + cor33 = record { + coproduct = N + ; κ1 = nzero TNat + ; κ2 = nsuc TNat ; isProduct = record { - _+_ = λ {a} f g → prop33.g p f ( g o π ) -- Hom A (N n ∧ a) a - ; κ1f+g=f = λ {a} {f} {g} → prop33.g0=f p f (g o π ) - ; κ2f+g=g = k2 + _+_ = λ {a} f g → prop33.g (p f ( g o π )) -- Hom A (N n ∧ a) a + ; κ1f+g=f = λ {a} {f} {g} → prop33.g0=f (p f (g o π ) ) + ; κ2f+g=g = λ {a} {f} {g} → k2 {a} {f} {g} ; uniqueness = {!!} - ; +-cong = λ f=f' g=g' → prop33.g-cong p f=f' (resp refl-hom g=g' ) - + ; +-cong = λ f=f' g=g' → {!!} -- prop33.g-cong p f=f' (resp refl-hom g=g' ) } } where - p = p33 n - k2 : {a : Obj A} {f : Hom A 1 a} {g : Hom A (NatD.Nat (ToposNat.TNat n)) a } - → A [ A [ prop33.g p f ((A Category.o g) π) o NatD.nsuc (ToposNat.TNat n) ] ≈ g ] + p : {a : Obj A} (f : Hom A 1 a) ( h : Hom A (N ∧ a) a ) → prop33 f h + p f h = p33 f h + k2 : {a : Obj A} {f : Hom A 1 a} {g : Hom A (Nat TNat) a } + → A [ A [ prop33.g (p f (g o π)) o nsuc TNat ] ≈ g ] k2 {a} {f} {g} = begin - (prop33.g p f ((A Category.o g) π) o NatD.nsuc (ToposNat.TNat n)) ≈⟨ prop33.gs=h p f (g o π ) ⟩ - ( g o π ) o < id1 A (N n) , prop33.g p f (g o π) > ≈⟨ sym assoc ⟩ - g o ( π o < id1 A (N n) , prop33.g p f (g o π) >) ≈⟨ cdr (IsCCC.e3a isCCC ) ⟩ - g o id1 A (N n) ≈⟨ idR ⟩ + (prop33.g (p f (g o π)) o nsuc TNat) ≈⟨ prop33.gs=h (p f (g o π )) ⟩ + ( g o π ) o < id1 A N , prop33.g (p f (g o π)) > ≈⟨ sym assoc ⟩ + g o ( π o < id1 A N , prop33.g (p f (g o π)) >) ≈⟨ cdr (IsCCC.e3a isCCC ) ⟩ + g o id1 A N ≈⟨ idR ⟩ g ∎