Mercurial > hg > Members > kono > Proof > category
changeset 563:8b18361e6ca9
try id equalizer
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 23 Apr 2017 19:17:04 +0900 |
parents | 14483d9d604c |
children | 40dfdb801061 |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 32 insertions(+), 55 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Mon Apr 10 12:16:01 2017 +0900 +++ b/SetsCompleteness.agda Sun Apr 23 19:17:04 2017 +0900 @@ -112,14 +112,19 @@ elm-cong : { c₂ : Level} → {a b : Obj (Sets {c₂}) } {f g : Hom (Sets {c₂}) a b} → (x y : sequ a b f g) → equ x ≡ equ y → x ≡ y elm-cong ( elem x eq ) (elem .x eq' ) refl = ≡cong ( λ ee → elem x ee ) ( irr eq eq' ) -fe=ge : { c₂ : Level} → {a b : Obj (Sets {c₂}) } {f g : Hom (Sets {c₂}) a b} → Sets [ Sets [ f o (λ e → equ e ) ] ≈ Sets [ g o (λ e → equ e ) ] ] +fe=ge : { c₂ : Level} → {a b : Obj (Sets {c₂}) } {f g : Hom (Sets {c₂}) a b} + → Sets [ Sets [ f o (λ e → equ {_} {a} {b} {f} {g} e ) ] ≈ Sets [ g o (λ e → equ e ) ] ] fe=ge = extensionality Sets (fe=ge0 ) k : { c₂ : Level} → {a b : Obj (Sets {c₂}) } {f g : Hom (Sets {c₂}) a b} → {d : Obj Sets} (h : Hom Sets d a) → Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ] → Hom Sets d (sequ a b f g) k {_} {_} {_} {_} {_} {d} h eq = λ x → elem (h x) ( ≡cong ( λ y → y x ) eq ) -ek=h : { c₂ : Level} → {a b : Obj (Sets {c₂}) } {f g : Hom (Sets {c₂}) a b} → {d : Obj Sets} {h : Hom Sets d a} {eq : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} → Sets [ Sets [ (λ e → equ e ) o k h eq ] ≈ h ] +ek=h : { c₂ : Level} → {a b : Obj (Sets {c₂}) } {f g : Hom (Sets {c₂}) a b} → {d : Obj Sets} {h : Hom Sets d a} {eq : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} → Sets [ Sets [ (λ e → equ {_} {a} {b} {f} {g} e ) o k h eq ] ≈ h ] ek=h {_} {_} {_} {_} {_} {d} {h} {eq} = refl +lemma-equ : { c₂ : Level} {a b b' : Obj (Sets {c₂}) } { f g : Hom (Sets {c₂}) a b } { f' g' : Hom (Sets {c₂}) a b' } + (s : sequ a b f g ) ( t : sequ a b' f' g' ) → equ s ≡ equ t +lemma-equ ( elem x eq ) ( elem y eq') = {!!} + open sequ -- equalizer-c = sequ a b f g @@ -135,7 +140,7 @@ injection : { c₂ : Level } {a b : Obj (Sets { c₂})} (f : Hom Sets a b) → Set c₂ injection f = ∀ x y → f x ≡ f y → x ≡ y lemma5 : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → - Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → (x : d ) → equ (k h fh=gh x) ≡ equ (k' x) + Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → (x : d ) → equ {_} {a} {b} {f} {g} (k h fh=gh x) ≡ equ (k' x) lemma5 refl x = refl -- somehow this is not equal to lemma1 uniqueness : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → Sets [ k h fh=gh ≈ k' ] @@ -187,8 +192,7 @@ record snequ { c₂ } { I OC : Set c₂ } ( sobj : OC → Set c₂ ) ( smap : { i j : OC } → (f : I → I )→ sobj i → sobj j ) : Set c₂ where field - sn : snproj sobj smap - snequ1 : { i j : OC } → ( f : I → I ) → sequ (sobj i) (sobj j) ( λ x → smap f ( snmap sn i ) ) ( λ x → snmap sn j ) + snequ1 : { i j : OC } → ( f : I → I ) → sequ (snproj sobj smap ) (sobj j) ( λ x → smap f ( snmap x i ) ) ( λ x → snmap x j ) open snequ @@ -198,66 +202,39 @@ Cone : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( s : Small C I ) ( Γ : Functor C (Sets {c₁} ) ) → NTrans C Sets (K Sets C (snequ (ΓObj s Γ) (ΓMap s Γ) )) Γ Cone C I s Γ = record { - TMap = λ i → λ se → snmap ( sn se ) i - ; isNTrans = record { commute = comm1 } + TMap = λ i → λ se → snmap (equ (snequ1 se {i} {i} (λ x → x )) ) i + ; isNTrans = record { commute = {!!} } } where - comm1 : {a b : Obj C} {f : Hom C a b} → - Sets [ Sets [ FMap Γ f o (λ se → snmap (sn se) a) ] ≈ - Sets [ (λ se → snmap (sn se) b) o FMap (K Sets C (snequ (ΓObj s Γ) (ΓMap s Γ))) f ] ] - comm1 {a} {b} {f} = extensionality Sets ( λ se → begin - FMap Γ f (snmap (sn se) a) - ≡⟨ ≡cong ( λ f → FMap Γ f ( snmap (sn se) a )) (sym ( hom-iso s )) ⟩ - FMap Γ (hom← s ( hom→ s f)) (snmap (sn se) a) - ≡⟨ fe=ge0 ( snequ1 se (hom→ s f ) ) ⟩ - snmap (sn se) b + commute1 : {a b : Obj C} {f : Hom C a b} → Sets [ Sets [ FMap Γ f o (λ se → snmap (equ (snequ1 se {a} {a} (λ x → x))) a) ] ≈ + Sets [ (λ se → snmap (equ (snequ1 se {b} {b} (λ x → x))) b) o FMap (K Sets C (snequ (ΓObj s Γ) (ΓMap s Γ))) f ] ] + commute1 {a} {b} {f} = extensionality Sets ( λ se → begin + (Sets [ FMap Γ f o (λ se₁ → snmap (equ (snequ1 se₁ (λ x → x))) a) ]) se + ≡⟨⟩ + FMap Γ f (snmap (equ (snequ1 se (λ x → x))) a) + ≡⟨ {!!} ⟩ + FMap Γ (hom← s ( hom→ s f)) (snmap (equ (snequ1 se {a} {a} (λ x → x))) a) + ≡⟨ {!!} ⟩ + FMap Γ (hom← s ( hom→ s f)) (snmap (equ (snequ1 se (hom→ s f ))) a) + ≡⟨ fe=ge0 ( snequ1 se (hom→ s f ) ) ⟩ + snmap (equ (snequ1 se ( hom→ s f ) )) b + ≡⟨ {!!} ⟩ + snmap (equ (snequ1 se (λ x → x))) b + ≡⟨⟩ + (Sets [ (λ se₁ → snmap (equ (snequ1 se₁ (λ x → x))) b) o FMap (K Sets C (snequ (ΓObj s Γ) (ΓMap s Γ))) f ]) se ∎ ) where open import Relation.Binary.PropositionalEquality open ≡-Reasoning + + SetsLimit : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( small : Small C I ) ( Γ : Functor C (Sets {c₁} ) ) → Limit Sets C Γ SetsLimit { c₂} C I s Γ = record { a0 = snequ (ΓObj s Γ) (ΓMap s Γ) ; t0 = Cone C I s Γ ; isLimit = record { - limit = limit1 - ; t0f=t = λ {a t i } → t0f=t {a} {t} {i} - ; limit-uniqueness = λ {a t i } → limit-uniqueness {a} {t} {i} + limit = {!!} + ; t0f=t = λ {a t i } → {!!} + ; limit-uniqueness = λ {a t i } → {!!} } } where - setprod : {a : Obj Sets} → NTrans C Sets (K Sets C a) Γ → (x : a ) → snproj (ΓObj s Γ) (ΓMap s Γ) - setprod t x = record { snmap = λ i → TMap t i x } - comm3 : { a : Obj Sets } {x : a } {i j : Obj C} (t : NTrans C Sets (K Sets C a) Γ) (f : I → I ) - → Sets [ Sets [ (λ x₁ → ΓMap s Γ f (snmap (setprod t x) i)) o TMap t i ] ≈ Sets [ (λ x₁ → snmap (setprod t x) j) o TMap t i ] ] - comm3 {a} {x} t f = {!!} - limit1 : (a : Obj Sets) → NTrans C Sets (K Sets C a) Γ → Hom Sets a (snequ (ΓObj s Γ) (ΓMap s Γ)) - limit1 a t = λ ( x : a ) → record { - sn = setprod t x - ; snequ1 = λ {i} {j} f → k (TMap t i ) (comm3 t f ) x - } - t0f=t : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ ) i o limit1 a t ] ≈ TMap t i ] - t0f=t {a} {t} {i} = extensionality Sets ( λ x → begin - ( Sets [ TMap (Cone C I s Γ ) i o limit1 a t ]) x - ≡⟨⟩ - TMap t i x - ∎ ) where - open import Relation.Binary.PropositionalEquality - open ≡-Reasoning - limit-uniqueness : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {f : Hom Sets a (snequ (ΓObj s Γ) (ΓMap s Γ) )} → - ({i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ ) i o f ] ≈ TMap t i ]) → Sets [ limit1 a t ≈ f ] - limit-uniqueness {a} {t} {f} cif=t = extensionality Sets ( λ x → begin - limit1 a t x - ≡⟨⟩ - record { sn = setprod t x ; snequ1 = λ {i} f' → k ( TMap t i ) (comm3 {a} {x} t f' ) x } - ≡⟨ ≡cong2 {!!} {!!} {!!} ⟩ - record { sn = sn ( f x ) ; snequ1 = λ {i} {j} f' → ( snequ1 (f x ) f' ) } - ≡⟨⟩ - f x - ∎ ) where - open import Relation.Binary.PropositionalEquality - open ≡-Reasoning - snmap-cong : ( e : snequ (ΓObj s Γ) (ΓMap s Γ) ) {i : Obj C } { f g : I → I } - → {!!} -- snmap ( equ ( snequ1 e f)) i ≡ snmap ( equ ( snequ1 e g)) i - snmap-cong e {i} = ≡cong ( λ s → snmap s i ) refl - k-cong : { i j : Obj C } ( f' : I → I ) ( x : a ) → k ( TMap t i ) {!!} x ≡ snequ1 (f x) f' - k-cong {i} {j} f' x = {!!}