Mercurial > hg > Members > kono > Proof > category
changeset 270:8ba03259a177
one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 22 Sep 2013 19:49:38 +0900 |
parents | 6056a995964b |
children | 28278175d696 |
files | pullback.agda |
diffstat | 1 files changed, 31 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/pullback.agda Sun Sep 22 18:48:12 2013 +0900 +++ b/pullback.agda Sun Sep 22 19:49:38 2013 +0900 @@ -155,6 +155,10 @@ A [ A [ TMap t0 i o limit a t ] ≈ TMap t i ] limit-uniqueness : { a : Obj A } → { t : NTrans I A ( K I a ) Γ } → { f : Hom A a a0 } → ∀ ( i : Obj I ) → A [ A [ TMap t0 i o f ] ≈ TMap t i ] → A [ limit a t ≈ f ] + A0 : Obj A + A0 = a0 + T0 : NTrans I A ( K I a0 ) Γ + T0 = t0 -------------------------------- -- @@ -232,17 +236,32 @@ open import Function -lim-ε : ( a0 : Obj A ) ( t0 : NTrans I A ( K I a0 ) Γ ) - ( lim : Limit I Γ a0 t0 ) → (b : Obj ( A ^ I )) → NTrans I A (FObj (KI I) a0) b -lim-ε a0 t0 lim b = {!!} +limit2adjoint : + ( lim : ( Γ : Functor I A ) → { a0 : Obj A } { t0 : NTrans I A ( K I a0 ) Γ } → Limit I Γ a0 t0 ) + → ( a0 : ( b : Functor I A ) → Obj A ) ( t0 : ( b : Functor I A ) → NTrans I A ( K I (a0 b) ) b ) + → coUniversalMapping A ( A ^ I ) (KI I) (λ b → A0 (lim b {a0 b} {t0 b} ) ) ( λ b → T0 ( lim b {a0 b} {t0 b} ) ) +limit2adjoint lim a0 t0 = record { + _*' = λ {b} {a} k → limit (lim b {a0 b} {t0 b} ) a k ; + iscoUniversalMapping = record { + couniversalMapping = λ{ b a f} → couniversalMapping1 {b} {a} {f} ; + couniquness = λ {b a f g } → couniquness1 {b} {a} {f} {g} + } + } where + couniversalMapping1 : {b : Obj (A ^ I)} {a : Obj A} {f : Hom (A ^ I) (FObj (KI I) a) b} → + A ^ I [ A ^ I [ T0 (lim b {a0 b} {t0 b}) o FMap (KI I) (limit (lim b {a0 b} {t0 b}) a f) ] ≈ f ] + couniversalMapping1 {b} {a} {f} {i} = let open ≈-Reasoning (A) in begin + TMap (T0 (lim b {a0 b} {t0 b})) i o TMap ( FMap (KI I) (limit (lim b {a0 b} {t0 b}) a f) ) i + ≈⟨⟩ + TMap (t0 b) i o (limit (lim b) a f) + ≈⟨ t0f=t (lim b) ⟩ + TMap f i -- i comes from ∀{i} → B [ TMap f i ≈ TMap g i ] + ∎ + couniquness1 : {b : Obj (A ^ I)} {a : Obj A} {f : Hom (A ^ I) (FObj (KI I) a) b} {g : Hom A a (A0 (lim b {a0 b} {t0 b} ))} → + A ^ I [ A ^ I [ T0 (lim b {a0 b} {t0 b} ) o FMap (KI I) g ] ≈ f ] → A [ limit (lim b {a0 b} {t0 b} ) a f ≈ g ] + couniquness1 {b} {a} {f} {g} lim-g=f = let open ≈-Reasoning (A) in begin + limit (lim b {a0 b} {t0 b} ) a f + ≈⟨ limit-uniqueness ( lim b ) ? lim-g=f ⟩ + g + ∎ -limit2adjoint : ( a0 : Obj A ) ( t0 : NTrans I A ( K I a0 ) Γ ) - ( lim : Limit I Γ a0 t0 ) → coUniversalMapping A ( A ^ I ) (KI I) (λ b → a0 ) (lim-ε a0 t0 lim) -limit2adjoint a0 t0 lim = record { - _*' = λ {b} {a} k → limit lim a ? ; - iscoUniversalMapping = record { - couniversalMapping = {!!} ; - couniquness = {!!} - } - }