Mercurial > hg > Members > kono > Proof > category
changeset 279:8df8e74e6316
limit and prod/equalizer
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 23 Sep 2013 03:31:24 +0900 |
parents | 9fafe4a53f89 |
children | 7ae58263d45b |
files | pullback.agda |
diffstat | 1 files changed, 23 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/pullback.agda Mon Sep 23 02:39:57 2013 +0900 +++ b/pullback.agda Mon Sep 23 03:31:24 2013 +0900 @@ -234,8 +234,6 @@ ∎ -open import Function - --------- -- -- limit gives co universal mapping ( i.e. adjunction ) @@ -279,28 +277,28 @@ open coUniversalMapping univ2limit : - ( U : Functor (A ^ I) A ) - ( ε : NTrans (A ^ I) (A ^ I) ( (KI I) ○ U ) identityFunctor ) - ( univ : coUniversalMapping A (A ^ I) (KI I) (FObj U) (TMap ε) ) → - ( Γ : Functor I A ) → Limit I Γ (FObj U Γ) (TMap ε Γ) + ( U : Obj (A ^ I ) → Obj A ) + ( ε : ( b : Obj (A ^ I ) ) → NTrans I A (K I (U b)) b ) + ( univ : coUniversalMapping A (A ^ I) (KI I) U (ε) ) → + ( Γ : Functor I A ) → Limit I Γ (U Γ) (ε Γ) univ2limit U ε univ Γ = record { limit = λ a t → limit1 a t ; t0f=t = λ {a t i } → t0f=t1 {a} {t} {i} ; limit-uniqueness = λ {a} {t} {f} t=f → limit-uniqueness1 {a} {t} {f} t=f } where - limit1 : (a : Obj A) → NTrans I A (K I a) Γ → Hom A a (FObj U Γ) - limit1 a t = _*' univ t - t0f=t1 : {a : Obj A} {t : NTrans I A (K I a) Γ} {i : Obj I} → - A [ A [ TMap (TMap ε Γ) i o limit1 a t ] ≈ TMap t i ] + limit1 : (a : Obj A) → NTrans I A (K I a) Γ → Hom A a (U Γ) + limit1 a t = _*' univ {_} {a} t + t0f=t1 : {a : Obj A} {t : NTrans I A (K I a) Γ} {i : Obj I} → + A [ A [ TMap (ε Γ) i o limit1 a t ] ≈ TMap t i ] t0f=t1 {a} {t} {i} = let open ≈-Reasoning (A) in begin - TMap (TMap ε Γ) i o limit1 a t + TMap (ε Γ) i o limit1 a t ≈⟨⟩ - TMap (TMap ε Γ) i o _*' univ t - ≈⟨ coIsUniversalMapping.couniversalMapping ( iscoUniversalMapping univ) ⟩ + TMap (ε Γ) i o _*' univ {{!!}} {{!!}} t + ≈⟨ coIsUniversalMapping.couniversalMapping ( iscoUniversalMapping univ) {{!!}} {{!!}} {{!!}} ⟩ TMap t i ∎ - limit-uniqueness1 : { a : Obj A } → { t : NTrans I A ( K I a ) Γ } → { f : Hom A a (FObj U Γ)} - → ( ∀ { i : Obj I } → A [ A [ TMap (TMap ε Γ) i o f ] ≈ TMap t i ] ) → A [ limit1 a t ≈ f ] + limit-uniqueness1 : { a : Obj A } → { t : NTrans I A ( K I a ) Γ } → { f : Hom A a (U Γ)} + → ( ∀ { i : Obj I } → A [ A [ TMap (ε Γ) i o f ] ≈ TMap t i ] ) → A [ limit1 a t ≈ f ] limit-uniqueness1 {a} {t} {f} εf=t = let open ≈-Reasoning (A) in begin _*' univ t ≈⟨ ( coIsUniversalMapping.couniquness ( iscoUniversalMapping univ) ) εf=t ⟩ @@ -310,3 +308,13 @@ +limit-from : + ( prod : (a b ab : Obj A) ( π1 : Hom A ab a ) ( π2 : Hom A ab b ) + → Product A a b ab π1 π2 ) + ( eqa : {a b c : Obj A} → (f g : Hom A a b) → {e : Hom A c a } → Equalizer A e f g ) + -- ( A [ π1 o equalizer ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ){e} ) ] ) + -- ( A [ π2 o equalizer ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ){e} ) ] ) + ( U : Obj (A ^ I ) → Obj A ) + ( ε : ( b : Obj (A ^ I ) ) → NTrans I A (K I (U b)) b ) → + ( Γ : Functor I A ) → Limit I Γ (U Γ) (ε Γ) +limit-from = ?