Mercurial > hg > Members > kono > Proof > category
changeset 712:9092874a0633
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 23 Nov 2017 12:37:22 +0900 |
parents | bb5b028489dc |
children | 5e101ee6dab9 |
files | monoidal.agda |
diffstat | 1 files changed, 25 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/monoidal.agda Thu Nov 23 12:08:42 2017 +0900 +++ b/monoidal.agda Thu Nov 23 12:37:22 2017 +0900 @@ -411,7 +411,7 @@ φ (( id1 Sets (FObj F x) □ φ ) ( ( Iso.≅→ (mα-iso isM) ) ((a , b) , c))) ≡⟨⟩ φ ( a , φ (b , c)) - ≡⟨ {!!} ⟩ + ≡⟨ {!!} ⟩ ( FMap F (Iso.≅→ (mα-iso isM))) (φ (( φ (a , b)) , c )) ≡⟨⟩ ( FMap F (Iso.≅→ (mα-iso isM))) (φ (( φ □ id1 Sets (FObj F f) ) ((a , b) , c))) @@ -423,28 +423,39 @@ o Sets [ (id1 Sets (FObj F a) □ φ ) o Iso.≅→ (mα-iso isM) ] ] ≈ Sets [ FMap F (Iso.≅→ (mα-iso isM)) o Sets [ φ o (φ □ id1 Sets (FObj F c)) ] ] ] comm1 {a} {b} {c} = extensionality Sets ( λ x → comm10 x ) + comm20 : {a b : Obj Sets} ( x : FObj F a * One ) → ( Sets [ + FMap F (Iso.≅→ (mρ-iso isM)) o Sets [ φ o + FMap (m-bi MonoidalSets) (id1 Sets (FObj F a) , (λ _ → unit )) ] ] ) x ≡ Iso.≅→ (mρ-iso isM) x + comm20 {a} {b} (x , OneObj ) = begin + (FMap F (Iso.≅→ (mρ-iso isM))) ( φ ( x , unit ) ) + ≡⟨ {!!} ⟩ + x + ≡⟨⟩ + Iso.≅→ (mρ-iso isM) ( x , OneObj ) + ∎ + where + open import Relation.Binary.PropositionalEquality + open ≡-Reasoning comm2 : {a b : Obj Sets} → Sets [ Sets [ FMap F (Iso.≅→ (mρ-iso isM)) o Sets [ φ o FMap (m-bi MonoidalSets) (id1 Sets (FObj F a) , (λ _ → unit )) ] ] ≈ Iso.≅→ (mρ-iso isM) ] - comm2 {a} {b} = extensionality Sets ( λ x → begin - (FMap F (Iso.≅→ (mρ-iso isM))) ( φ ( proj₁ x , unit ) ) + comm2 {a} {b} = extensionality Sets ( λ x → comm20 {a} {b} x ) + comm30 : {a b : Obj Sets} ( x : One * FObj F b ) → ( Sets [ + FMap F (Iso.≅→ (mλ-iso isM)) o Sets [ φ o + FMap (m-bi MonoidalSets) ((λ _ → unit ) , id1 Sets (FObj F b) ) ] ] ) x ≡ Iso.≅→ (mλ-iso isM) x + comm30 {a} {b} ( OneObj , x) = begin + (FMap F (Iso.≅→ (mλ-iso isM))) ( φ ( unit , x ) ) ≡⟨ {!!} ⟩ - Iso.≅→ (mρ-iso isM) x - ∎ ) + x + ≡⟨⟩ + Iso.≅→ (mλ-iso isM) ( OneObj , x ) + ∎ where open import Relation.Binary.PropositionalEquality open ≡-Reasoning comm3 : {a b : Obj Sets} → Sets [ Sets [ FMap F (Iso.≅→ (mλ-iso isM)) o Sets [ φ o FMap (m-bi MonoidalSets) ((λ _ → unit ) , id1 Sets (FObj F b)) ] ] ≈ Iso.≅→ (mλ-iso isM) ] - comm3 {a} {b} = extensionality Sets ( λ x → begin - (FMap F (Iso.≅→ (mλ-iso isM))) ( φ ( unit , proj₂ x) ) - ≡⟨ {!!} ⟩ - Iso.≅→ (mλ-iso isM) x - ∎ ) - where - open import Relation.Binary.PropositionalEquality - open ≡-Reasoning - + comm3 {a} {b} = extensionality Sets ( λ x → comm30 {a} {b} x ) record Applicative {c₁ : Level} ( f : Functor (Sets {c₁}) (Sets {c₁}) )