changeset 1056:9272cafd1675

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 19 Apr 2021 16:05:52 +0900
parents c61674a18a2e
children 88f441d5bb18
files src/Polynominal.agda
diffstat 1 files changed, 15 insertions(+), 18 deletions(-) [+]
line wrap: on
line diff
--- a/src/Polynominal.agda	Mon Apr 19 09:21:59 2021 +0900
+++ b/src/Polynominal.agda	Mon Apr 19 16:05:52 2021 +0900
@@ -152,26 +152,23 @@
         --
         --   f ∙ <  x ∙ ○ b  , id1 A b >  ≈ f →  f ≈ k x (phi p)
         -- 
+        k-cong : {a b c : Obj A}  → (x :  Hom A 1 a) → (f g :  Hom A b c ) → A [ f ≈ g ] →  (fp : φ x {b} {c} f ) (gp :   φ x {b} {c} g )
+           → A [ k x fp   ≈ k x gp ]
+        k-cong = {!!}
         uniq : {a b c : Obj A}  → (x :  Hom A 1 a) (f :  Hom A b c) (phi  :  φ x {b} {c} f ) (f' : Hom A (a ∧ b) c) →
             A [  f' ∙ <  x ∙ ○ b  , id1 A b >  ≈ f ] → A [ f' ≈ k x phi ]
-        uniq {a} {b} {c} x f' phi  f fx=p with phi 
-        ... | i =  sym (begin 
-              k x i ≈⟨⟩
-              f' ∙ π'  ≈↑⟨ car fx=p ⟩
-              (f ∙ <  x ∙ ○ b  , id1 A b > ) ∙ π' ≈↑⟨ assoc ⟩
-              f ∙ (<  x ∙ ○ b  , id1 A b >  ∙ π') ≈⟨ cdr (IsCCC.distr-π isCCC) ⟩
-              f ∙ <  (x ∙ ○ b) ∙ π'   , id1 A b ∙ π' >   ≈⟨⟩
-              f ∙ <  k x {x ∙ ○ b} i  , id1 A b ∙ π' >   ≈⟨ cdr (π-cong (sym {!!}) refl-hom) ⟩
-              f ∙ <  k x (Poly.phi record { f = x ∙ ○ b ; phi = iv ii i })  , id1 A b ∙ π' >   ≈⟨ cdr (π-cong refl-hom idL) ⟩
-              f ∙  <  π ∙ < π , (○ b ∙ π' ) >  , π' >   ≈⟨ cdr (π-cong (IsCCC.e3a isCCC)  refl-hom) ⟩
-              f ∙  < π , π' >  ≈⟨ cdr (IsCCC.π-id isCCC) ⟩
-              f ∙  id1 A _ ≈⟨ idR ⟩
-              f ∎  )  
-        ... | ii = {!!}
-        ... | iii t t₁ = {!!}
-        ... | iv t t₁ = {!!}
-        ... | v t = {!!}
-        ... | φ-cong x₁ t = {!!}
+        uniq {a} {b} {c} x f phi  f' fx=p  = sym (begin
+               -- k x phi ≈⟨ uniq x (f ∙ < x ∙ ○ b , id1 A b > ) i (k x phi) {!!} ⟩
+               k x phi ≈⟨ k-cong x _ _ (sym fx=p)  phi i ⟩
+               k x {f' ∙ < x ∙ ○ b , id1 A b >} i ≈⟨ trans-hom (sym assoc)  (cdr (IsCCC.distr-π isCCC) ) ⟩ -- ( f' ∙ < x ∙ ○ b , id1 A b> ) ∙ π'
+               f' ∙ k x {< x ∙ ○ b , id1 A b >} (iii i i )                    -- ( f' ∙ < (x ∙ ○ b) ∙ π'              , id1 A b ∙ π' > ) 
+                   ≈↑⟨ cdr (π-cong (trans-hom (IsCCC.e3a isCCC)  k x {< x ∙ ○ b , id1 A b >} (iii i i ){!!}) refl-hom ) ⟩ 
+               f' ∙ < k x {x} ii ∙ < π , k x {○ b} i >  , k x {id1 A b} i >   -- ( f' ∙ < π ∙ < π , (x ∙ ○ b) ∙ π' >  , id1 A b ∙ π' > ) 
+                   ≈⟨ cdr (π-cong (cdr (π-cong refl-hom (car e2))) idL ) ⟩ 
+               f' ∙  <  π ∙ < π , (○ b ∙ π' ) >  , π' >   ≈⟨ cdr (π-cong (IsCCC.e3a isCCC)  refl-hom) ⟩
+               f' ∙  < π , π' >  ≈⟨ cdr (IsCCC.π-id isCCC) ⟩
+               f' ∙  id1 A _ ≈⟨ idR ⟩
+               f' ∎  )  
 
   -- functional completeness ε form
   FC : {a b : Obj A}  → (φ  : Poly a b 1 )  → Fc {a} {b} φ