Mercurial > hg > Members > kono > Proof > category
changeset 935:92f8f57467e3
add fig
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 15 May 2020 17:59:15 +0900 |
parents | cce9e539486e |
children | d13e0981e667 |
files | CCCGraph.agda |
diffstat | 1 files changed, 36 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph.agda Thu May 14 18:28:08 2020 +0900 +++ b/CCCGraph.agda Fri May 15 17:59:15 2020 +0900 @@ -368,8 +368,24 @@ FMap UX f = fmap f isFunctor UX = isf where isf : IsFunctor Cart Grph (λ z → g21 (fobj z)) fmap - IsFunctor.identity isf {a} {b} {f} e = {!!} - IsFunctor.distr isf {a} {b} {c} f = {!!} + eff : (a : Obj Cart) (f : vertex (g21 (fobj a)) ) → edge (g21 (fobj a)) f f + eff a f = {!!} + IsFunctor.identity isf {a} {b} {f} = begin + fmap (id1 Cart a) + ≈⟨⟩ + fmap {a} {a} (record { cmap = identityFunctor ; ccf = λ x → x }) + ≈⟨⟩ + record { vmap = λ e → vmap (m21 (fobj a)) (vmap (m12 (fobj a)) e ) ; emap = λ e → emap (m21 (fobj a)) (emap (m12 (fobj a)) e )} + ≈⟨ giso← {fobj a} {f} {f} {eff a f } ⟩ + record { vmap = λ y → y ; emap = λ f → f } + ≈⟨⟩ + id1 Grph (g21 (fobj a)) + ∎ where open ≈-Reasoning Grph + IsFunctor.distr isf {a} {b} {c} {f} {g} = begin + fmap ( Cart [ g o f ] ) + ≈⟨ {!!} ⟩ + Grph [ fmap g o fmap f ] + ∎ where open ≈-Reasoning Grph IsFunctor.≈-cong isf {a} {b} {f} {g} f=g e = {!!} where -- lemma ( (extensionality Sets ( λ z → lemma4 ( -- ≃-cong (cat b) (f=g (id1 (cat a) z)) (IsFunctor.identity (Functor.isFunctor (cmap f))) (IsFunctor.identity (Functor.isFunctor (cmap g))) -- )))) (f=g e) where @@ -399,16 +415,26 @@ } where open forgetful open ccc-from-graph + -- η : Hom Grph a (FObj UX (F a)) + -- f : edge g x y -----------------------------------> g21 (record {vertex = fobj (atom x) ; edge = fmap h }) : Graph + -- Graph g x ----------------------> y : vertex g ↑ + -- arrow f : Hom (PL g) (atom x) (atom y) | + -- PL g atom x ------------------> atom y : Obj (PL g) | UX : Functor Sets Graph + -- | | + -- | Functor (CS g) | + -- ↓ | + -- Sets ((z : vertx g) → C z x) ----> ((z : vertx g) → C z y) = h : Hom Sets (fobj (atom x)) (fobj (atom y)) + -- + cs : {c₁ c₂ : Level} → (g : Graph {c₁} {c₂} ) → Functor (ccc-from-graph.PL g) (Sets {_}) + cs g = CS g F : Obj (Grph {c₁} {c₂}) → Obj (Cart {suc (c₁ ⊔ c₂)} {c₁ ⊔ c₂} {c₁ ⊔ c₂}) F g = record { cat = Sets {c₁ ⊔ c₂} ; ccc = sets ; ≡←≈ = λ eq → eq } - FO : (a : Obj (Grph {c₁} {c₂}) ) → Graph {(c₁ ⊔ c₂)} {(c₁ ⊔ c₂)} - FO a = FObj UX (F a) η : (a : Obj (Grph {c₁} {c₂}) ) → Hom Grph a (FObj UX (F a)) - η a = record { vmap = λ y → {!!} ; emap = λ f → {!!} } - csc : Graph → Obj Cart - csc g = record { cat = Sets {c₁ ⊔ c₂} ; ccc = sets ; ≡←≈ = λ eq → eq } - cs : {c₁ c₂ : Level} → (g : Graph {c₁} {c₂} ) → Functor (ccc-from-graph.PL g) (Sets {_}) - cs g = CS g + η a = record { vmap = λ y → {!!} y ; emap = λ f → {!!} } where + -- k : ( y : vertex a) → Set (c₁ ⊔ c₂) + -- k y = ( e : vertex a ) → graphtocat.Chain a e y + -- mm : Graph {suc (c₁ ⊔ c₂)} {(c₁ ⊔ c₂)} + -- mm = forgetful.fobj {c₁} {c₂} (F a) pl : {c₁ c₂ : Level} → (g : Graph {c₁} {c₂} ) → Category _ _ _ pl g = PL g cobj : {g : Obj (Grph {c₁} {c₂} ) } {c : Obj Cart} → Hom Grph g (FObj UX c) → Objs g → Obj (cat c) @@ -425,7 +451,7 @@ c-map {g} {c} {a} {⊤} f x = CCC.○ (ccc c) (cobj f a) c-map {g} {c} {a} {x ∧ y} f z = CCC.<_,_> (ccc c) (c-map f {!!}) (c-map f {!!}) c-map {g} {c} {d} {b <= a} f x = CCC._* (ccc c) ( c-map f {!!}) - solution : {g : Obj Grph } {c : Obj Cart } → Hom Grph g (FObj UX c) → Hom Cart (csc g) c + solution : {g : Obj Grph } {c : Obj Cart } → Hom Grph g (FObj UX c) → Hom Cart (F g) c solution {g} {c} f = {!!} -- record { cmap = record { FObj = λ x → {!!} ; FMap = {!!} ; isFunctor = {!!} } ; ccf = {!!} }