Mercurial > hg > Members > kono > Proof > category
changeset 971:9746e93a8c31
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 27 Feb 2021 12:15:28 +0900 |
parents | 72b6b4577911 |
children | e05eb6029b5b |
files | src/Polynominal.agda src/ToposEx.agda src/cat-utility.agda src/monoid-monad.agda |
diffstat | 4 files changed, 74 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Polynominal.agda Fri Feb 26 12:19:58 2021 +0900 +++ b/src/Polynominal.agda Sat Feb 27 12:15:28 2021 +0900 @@ -14,7 +14,7 @@ open NTrans -- --- Hom in Sleisli Category +-- Hom in Kleisli Category -- record SHom (a : Obj A) (b : Obj A)
--- a/src/ToposEx.agda Fri Feb 26 12:19:58 2021 +0900 +++ b/src/ToposEx.agda Sat Feb 27 12:15:28 2021 +0900 @@ -82,5 +82,47 @@ -- } -- } +module _ {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (c : CCC A) (t : Topos A (CCC.1 c) (CCC.○ c) ) where + open ≈-Reasoning A + open CCC.CCC c + δmono : {b : Obj A } → Mono A < id1 A b , id1 A b > + δmono = record { + isMono = m1 + } where + m1 : {d b : Obj A} (f g : Hom A d b) → A [ A [ < id1 A b , id1 A b > o f ] ≈ A [ < id1 A b , id1 A b > o g ] ] → A [ f ≈ g ] + m1 {d} {b} f g = {!!} + prop32→ : {a b : Obj A}→ (f g : Hom A a b ) + → A [ f ≈ g ] → A [ A [ char t < id1 A b , id1 A b > δmono o < f , g > ] ≈ A [ ⊤ t o ○ a ] ] + prop32→ = {!!} + + prop23→ : {a b : Obj A}→ (f g : Hom A a b ) + → A [ A [ char t < id1 A b , id1 A b > δmono o < f , g > ] ≈ A [ ⊤ t o ○ a ] ] → A [ f ≈ g ] + prop23→ = {!!} + + N : (n : ToposNat A 1 ) → Obj A + N n = NatD.Nat (ToposNat.TNat n) + + record prop33 (n : ToposNat A 1 ) {a : Obj A} (f : Hom A 1 a ) ( h : Hom A (N n ∧ a) a ) : Set ( suc c₁ ⊔ suc c₂ ⊔ suc ℓ ) where + field + g : Hom A (N n) a + g0=f : A [ A [ g o NatD.nzero (ToposNat.TNat n) ] ≈ f ] + gs=h : A [ A [ g o NatD.nsuc (ToposNat.TNat n) ] ≈ A [ h o < id1 A _ , g > ] ] + + cor33 : (n : ToposNat A 1 ) + → ( {a : Obj A} (f : Hom A 1 a ) ( h : Hom A (N n ∧ a) a ) → prop33 n f h ) + → coProduct A 1 ( NatD.Nat (ToposNat.TNat n) ) -- N ≅ N + 1 + cor33 n p = record { + coproduct = N n + ; κ1 = NatD.nzero (ToposNat.TNat n) + ; κ2 = id1 A (N n) + ; isProduct = record { + _+_ = λ {a} f g → prop33.g ( p {a} f π' ) + ; κ1fxg=f = λ {a} {f} {g} → prop33.g0=f (p f π' ) + ; κ2fxg=g = λ {a} {f} {g} → ? + ; uniqueness = {!!} + ; +-cong = {!!} + + } + }
--- a/src/cat-utility.agda Fri Feb 26 12:19:58 2021 +0900 +++ b/src/cat-utility.agda Sat Feb 27 12:15:28 2021 +0900 @@ -247,6 +247,25 @@ π2 : Hom A product b isProduct : IsProduct A a b product π1 π2 + record IsCoProduct { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) (a b ab : Obj A) + ( κ1 : Hom A a ab ) + ( κ2 : Hom A b ab ) + : Set (ℓ ⊔ (c₁ ⊔ c₂)) where + field + _+_ : {c : Obj A} ( f : Hom A a c ) → ( g : Hom A b c ) → Hom A ab c + κ1fxg=f : {c : Obj A} { f : Hom A a c } → { g : Hom A b c } → A [ A [ ( f + g ) o κ1 ] ≈ f ] + κ2fxg=g : {c : Obj A} { f : Hom A a c } → { g : Hom A b c } → A [ A [ ( f + g ) o κ2 ] ≈ g ] + uniqueness : {c : Obj A} { h : Hom A ab c } → A [ ( A [ h o κ1 ] ) + ( A [ h o κ2 ] ) ≈ h ] + +-cong : {c : Obj A} { f f' : Hom A a c } → { g g' : Hom A b c } → A [ f ≈ f' ] → A [ g ≈ g' ] → A [ f + g ≈ f' + g' ] + + record coProduct { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( a b : Obj A ) + : Set (ℓ ⊔ (c₁ ⊔ c₂)) where + field + coproduct : Obj A + κ1 : Hom A a coproduct + κ2 : Hom A b coproduct + isProduct : IsCoProduct A a b coproduct κ1 κ2 + ----- -- -- product on arbitrary index
--- a/src/monoid-monad.agda Fri Feb 26 12:19:58 2021 +0900 +++ b/src/monoid-monad.agda Sat Feb 27 12:15:28 2021 +0900 @@ -5,7 +5,7 @@ module monoid-monad {c : Level} where open import Algebra.Structures -open import HomReasoning +open import HomReasoning open import cat-utility open import Category.Cat open import Data.Product @@ -13,7 +13,7 @@ open import Relation.Binary -- open Monoid -open import Algebra.FunctionProperties using (Op₁; Op₂) +-- open import Algebra.FunctionProperties using (Op₁; Op₂) open import Relation.Binary.PropositionalEquality hiding ( [_] ; sym ) @@ -110,21 +110,23 @@ Lemma-MM36 : ∀( x y z : Carrier M ) → (x ∙ y) ∙ z ≡ x ∙ (y ∙ z ) Lemma-MM36 x y z = ( IsMonoid.assoc ( isMonoid M )) x y z --- Functional Extensionality Axiom (We cannot prove this in Agda / Coq, just assumming ) import Relation.Binary.PropositionalEquality -- postulate extensionality : { a b : Obj A } {f g : Hom A a b } → Relation.Binary.PropositionalEquality.Extensionality c c -postulate extensionality : Relation.Binary.PropositionalEquality.Extensionality c c +-- postulate extensionality : Axiom.Extensionality.Propositional.Extensionality c c + +import Axiom.Extensionality.Propositional +postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Axiom.Extensionality.Propositional.Extensionality c₂ c₂ -- Multi Arguments Functional Extensionality extensionality30 : {f g : Carrier M → Carrier M → Carrier M → Carrier M } → (∀ x y z → f x y z ≡ g x y z ) → ( f ≡ g ) -extensionality30 eq = extensionality ( λ x → extensionality ( λ y → extensionality (eq x y) ) ) +extensionality30 eq = extensionality A ( λ x → extensionality A ( λ y → extensionality A (eq x y) ) ) Lemma-MM9 : (λ(x : Carrier M) → ( ε M ∙ x )) ≡ ( λ(x : Carrier M) → x ) -Lemma-MM9 = extensionality Lemma-MM34 +Lemma-MM9 = extensionality A Lemma-MM34 Lemma-MM10 : ( λ x → (x ∙ ε M)) ≡ ( λ x → x ) -Lemma-MM10 = extensionality Lemma-MM35 +Lemma-MM10 = extensionality A Lemma-MM35 Lemma-MM11 : (λ x y z → ((x ∙ y ) ∙ z)) ≡ (λ x y z → ( x ∙ (y ∙ z ) )) Lemma-MM11 = extensionality30 Lemma-MM36 @@ -141,7 +143,7 @@ } } where Lemma-MM3 : {a : Obj A} → A [ A [ TMap μ a o TMap η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] - Lemma-MM3 {a} = let open ≈-Reasoning (A) renaming ( _o_ to _*_ ) in + Lemma-MM3 {a} = let open ≈-Reasoning (A) renaming ( _o_ to _*_ ) hiding (_∙_) in begin TMap μ a o TMap η ( FObj T a ) ≈⟨⟩ @@ -154,7 +156,7 @@ Id {_} {_} {_} {A} (FObj T a) ∎ Lemma-MM4 : {a : Obj A} → A [ A [ TMap μ a o (FMap T (TMap η a ))] ≈ Id {_} {_} {_} {A} (FObj T a) ] - Lemma-MM4 {a} = let open ≈-Reasoning (A) renaming ( _o_ to _*_ ) in + Lemma-MM4 {a} = let open ≈-Reasoning (A) renaming ( _o_ to _*_ ) hiding (_∙_) in begin TMap μ a o (FMap T (TMap η a )) ≈⟨⟩ @@ -167,7 +169,7 @@ Id {_} {_} {_} {A} (FObj T a) ∎ Lemma-MM5 : {a : Obj A} → A [ A [ TMap μ a o TMap μ ( FObj T a ) ] ≈ A [ TMap μ a o FMap T (TMap μ a) ] ] - Lemma-MM5 {a} = let open ≈-Reasoning (A) renaming ( _o_ to _*_ ) in + Lemma-MM5 {a} = let open ≈-Reasoning (A) renaming ( _o_ to _*_ ) hiding (_∙_) in begin TMap μ a o TMap μ ( FObj T a ) ≈⟨⟩