Mercurial > hg > Members > kono > Proof > category
changeset 805:979c0bf97a5a
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 25 Apr 2019 17:56:30 +0900 |
parents | 2716d2945730 |
children | dd0d0a201990 |
files | CCChom.agda |
diffstat | 1 files changed, 57 insertions(+), 19 deletions(-) [+] |
line wrap: on
line diff
--- a/CCChom.agda Thu Apr 25 12:22:03 2019 +0900 +++ b/CCChom.agda Thu Apr 25 17:56:30 2019 +0900 @@ -619,26 +619,64 @@ -- open import Category.Sets -- postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionality c₂ c₂ + fobj : {G : Graph} ( a : Obj (DX G) ) → Set + fobj {G} (atom x) = vertex G + fobj (a ∧ b) = (fobj a ) /\ (fobj b ) + fobj (a <= b) = fobj b → fobj a + fobj ⊤ = One' + {-# TERMINATING #-} + fmap : {G : Graph} { a b : Obj (DX G) } → Hom (DX G) a b → fobj a → fobj b + fmap {G} {a} {a} (id a) = id1 Sets (fobj a) where open ≈-Reasoning (Sets {Level.zero}) + fmap {G} {a} {(atom b)} (next (arrow x) f) = λ _ → b + fmap {G} {a} {b} (next (id b) f) = fmap f + fmap {G} {a} {⊤} (next (○ b) f) = λ _ → OneObj' + fmap {G} {a} {b} (next π f) = λ z → proj₁ ( fmap f z ) + fmap {G} {a} {b} (next π' f) = λ z → proj₂ ( fmap f z ) + fmap {G} {a} {b} (next ε f) = λ z → ( proj₁ (fmap f z) )( proj₂ (fmap f z) ) + fmap {G} {a} {b} (next (f ・ g) h) = λ z → fmap ( next f (next g h ) ) z + fmap {G} {a} {(_ ∧ _)} (next < f , g > h) = λ z → ( fmap (next f h) z , fmap (next g h) z) + fmap {G} {a} {(c <= b)} (next {_} {d} (f *) g ) = λ x y → fmap (next f (id (d ∧ b))) ( fmap g x , y ) + CS : {G : Graph } → Functor (DX G) (Sets {Level.zero}) - FObj (CS {G}) (atom x) = vertex G - FObj CS ⊤ = One' - FObj CS (a ∧ b) = (FObj CS a ) /\ (FObj CS b ) - FObj CS (a <= b) = FObj CS b → FObj CS a - FMap CS {a} {a} (id a) = id1 Sets (FObj CS a) where open ≈-Reasoning (Sets {Level.zero}) - FMap CS {a} {(atom b)} (next (arrow x) f) = λ _ → b - FMap CS {a} {.a₁} (next (id a₁) f) = FMap CS f - FMap CS {a} {.⊤} (next (○ a₁) f) = λ _ → OneObj' - FMap CS {a} {b} (next π f) = λ z → proj₁ ( FMap CS f z ) - FMap CS {a} {b} (next π' f) = λ z → proj₂ ( FMap CS f z ) - FMap CS {a} {b} (next ε f) = λ z → ( proj₁ (FMap CS f z) )( proj₂ (FMap CS f z) ) - FMap CS {a} {.(_ ∧ _)} (next < f , g > h) = λ z → ( FMap CS (next f h) z , FMap CS (next g h) z) - FMap CS {a} {b} (next (f ・ g) h) = λ z → FMap CS ( next f (next g h ) ) z - FMap CS {a} {(c <= b)} (next (e *) f) = {!!} + FObj CS a = fobj a + FMap (CS {G}) {a} {b} f = fmap {G} {a} {b} f isFunctor (CS {G}) = isf where - distrCS : {a b c : Obj (DX G)} { g : Hom (DX G) b c } { f : Hom (DX G) a b } → Sets [ FMap CS ((DX G) [ g o f ]) ≈ Sets [ FMap CS g o FMap CS f ] ] - distrCS = {!!} - isf : IsFunctor (DX G) Sets (FObj CS) ( FMap CS ) - IsFunctor.identity isf = extensionality Sets ( λ x → {!!} ) - IsFunctor.distr isf = distrCS + _++_ = Category._o_ (DX G) + distrCS : {a b c : Obj (DX G)} { f : Hom (DX G) a b } { g : Hom (DX G) b c } → Sets [ fmap ((DX G) [ g o f ]) ≈ Sets [ fmap g o fmap f ] ] + distrCS {a} {.a} {.a} {id a} {id .a} = refl + distrCS {a} {.a} {c} {id a} {next x g} = begin + fmap (DX G [ next x g o Chain.id a ]) + ≈⟨⟩ + fmap ( next x ( g ++ (Chain.id a))) + ≈⟨ extensionality Sets ( λ y → cong ( λ k → fmap ( next x k ) y ) (idR1 (DX G)) ) ⟩ + fmap ( next x g ) + ≈↑⟨ idL ⟩ + Sets [ fmap (next x g) o fmap (Chain.id a) ] + ∎ where open ≈-Reasoning Sets + distrCS {a} {b} {b} {f} {id b} = refl + distrCS {a} {b} {.(atom _)} {f} {next (arrow x) g} = refl + distrCS {a} {b} {c} {f} {next (id c) g} = begin + fmap (DX G [ next (Arrow.id c) g o f ]) + ≈⟨ {!!} ⟩ + Sets [ fmap (next (Arrow.id c) g) o fmap f ] + ∎ where open ≈-Reasoning Sets + distrCS {a} {b} {.⊤} {f} {next (○ a₁) g} = begin + fmap (DX G [ next (○ a₁) g o f ]) + ≈⟨ extensionality Sets ( λ x → refl ) ⟩ + Sets [ fmap (next (○ a₁) g) o fmap f ] + ∎ where open ≈-Reasoning Sets + distrCS {a} {b} {c} {f} {next π g} = {!!} + distrCS {a} {b} {c} {f} {next π' g} = {!!} + distrCS {a} {b} {c} {f} {next ε g} = {!!} + distrCS {a} {b} {.(_ ∧ _)} {f} {next < x , x₁ > g} = {!!} + distrCS {a} {b} {c} {f} {next (x ・ x₁) g} = extensionality Sets ( λ z → begin + fmap (DX G [ next (x ・ x₁) g o f ]) z + ≡⟨ {!!} ⟩ + ( Sets [ fmap (next (x ・ x₁) g) o fmap f ] ) z + ∎ ) where open ≡-Reasoning + distrCS {a} {b} {.(_ <= _)} {f} {next (x *) g} = {!!} + isf : IsFunctor (DX G) Sets fobj fmap + IsFunctor.identity isf = extensionality Sets ( λ x → refl ) IsFunctor.≈-cong isf refl = refl + IsFunctor.distr isf {a} {b} {c} {g} {f} = distrCS {a} {b} {c} {g} {f}