Mercurial > hg > Members > kono > Proof > category
changeset 665:9904edf40547
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 23 Oct 2017 07:52:30 +0900 |
parents | 9e8276b89cd0 |
children | ba84fbc64c7d |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 11 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Sun Oct 22 23:36:30 2017 +0900 +++ b/SetsCompleteness.agda Mon Oct 23 07:52:30 2017 +0900 @@ -251,7 +251,7 @@ limit1 a t x ≡⟨⟩ record { snmap = λ i → ( TMap t i ) x ; sncommute = λ i j f → comm2 t f } - ≡⟨ snat-cong (limit1 a t x) (f x ) ( extensionality Sets ( λ i → eq1 x i )) (eq2 x ) ⟩ + ≡⟨ snat-cong (limit1 a t x) (f x ) ( extensionality Sets ( λ i → eq1 x i )) (eq5 x ) ⟩ record { snmap = λ i → snmap (f x ) i ; sncommute = λ i j g → sncommute (f x ) i j g } ≡⟨⟩ f x @@ -260,12 +260,17 @@ open ≡-Reasoning eq1 : (x : a ) (i : Obj C) → TMap t i x ≡ snmap (f x) i eq1 x i = sym ( ≡cong ( λ f → f x ) cif=t ) + eq2 : (x : a ) (i j : Obj C) (k : I) → ΓMap s Γ k (TMap t i x) ≡ TMap t j x -- hg cat -r 550 SetsCompleteness.agda + eq2 x i j f = ≡cong ( λ f → f x ) ( IsNTrans.commute ( isNTrans t ) ) + eq3 : (x : a ) (i j : Obj C) (k : I) → ΓMap s Γ k (snmap (f x) i) ≡ snmap (f x) j + eq3 x i j k = sncommute (f x ) i j k irr≅ : { c₂ : Level} {d : Set c₂ } { x y : d } ( eq eq' : x ≡ y ) → eq ≅ eq' irr≅ refl refl = refl - eq3 : ( x : a) ( i j : Obj C ) ( g : I ) → ≡cong ( λ h → h x ) ( IsNTrans.commute ( isNTrans t ) {i} {j} {hom← s g } ) - ≅ sncommute (f x) i j g - eq3 x i j g = {!!} + eq4 : ( x : a) ( i j : Obj C ) ( g : I ) + → TMap t i x ≡ snmap (f x) i + → ≡cong ( λ h → h x ) ( IsNTrans.commute ( isNTrans t ) {i} {j} {hom← s g } ) ≅ sncommute (f x) i j g + eq4 x i j g eq = {!!} -- irr≅ ? ? -- eq2 : ( x : a) → sncommute (limit1 a t x) ≅ sncommute (f x) - eq2 : ( x : a) → ( λ i j g → ≡cong ( λ h → h x ) ( IsNTrans.commute ( isNTrans t ) {i} {j} {hom← s g } )) + eq5 : ( x : a) → ( λ i j g → ≡cong ( λ h → h x ) ( IsNTrans.commute ( isNTrans t ) {i} {j} {hom← s g } )) ≅ ( λ i j g → sncommute (f x) i j g ) - eq2 x = {!!} + eq5 x = {!!}