Mercurial > hg > Members > kono > Proof > category
changeset 539:9a657775d81e
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 31 Mar 2017 08:11:46 +0900 |
parents | d22c93dca806 |
children | 2373c11a93f1 |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 16 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Fri Mar 31 08:01:13 2017 +0900 +++ b/SetsCompleteness.agda Fri Mar 31 08:11:46 2017 +0900 @@ -152,8 +152,8 @@ record Small { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where field - shom→ : {i j : Obj C } → Hom C i j → I → I - shom← : {i j : Obj C } → ( f : I → I ) → Hom C i j + shom→ : {i j : Obj C } → Hom C i j → I + shom← : {i j : Obj C } → ( f : I ) → Hom C i j shom-iso : {i j : Obj C } → { f : Hom C i j } → shom← ( shom→ f ) ≡ f -- ≈-≡ : {a b : Obj C } { x y : Hom C a b } → (x≈y : C [ x ≈ y ] ) → x ≡ y @@ -164,14 +164,14 @@ ΓObj s Γ i = FObj Γ i ΓMap : { c₁ c₂ ℓ : Level} { C : Category c₁ c₂ ℓ } { I : Set c₁ } ( s : Small C I ) ( Γ : Functor C ( Sets { c₁} )) - {i j : Obj C } → ( f : I → I ) → ΓObj s Γ i → ΓObj s Γ j + {i j : Obj C } → ( f : I ) → ΓObj s Γ i → ΓObj s Γ j ΓMap s Γ {i} {j} f = FMap Γ ( shom← s f ) record snat { c₂ } { I OC : Set c₂ } ( sobj : OC → Set c₂ ) - ( smap : { i j : OC } → (f : I → I )→ sobj i → sobj j ) : Set c₂ where + ( smap : { i j : OC } → (f : I )→ sobj i → sobj j ) : Set c₂ where field snmap : ( i : OC ) → sobj i - sncommute : { i j : OC } → ( f : I → I ) → smap f ( snmap i ) ≡ snmap j + sncommute : { i j : OC } → ( f : I ) → smap f ( snmap i ) ≡ snmap j open snat @@ -209,18 +209,23 @@ ; t0 = Cone C I s Γ ; isLimit = record { limit = limit1 - ; t0f=t = {!!} - ; limit-uniqueness = {!!} - } + ; t0f=t = λ {a t i } → t0f=t {a} {t} {i} + ; limit-uniqueness = λ {a t i } → limit-uniqueness {a} {t} {i} + } } where a0 : Obj Sets a0 = snat (ΓObj s Γ) (ΓMap s Γ) - comm2 : { a : Obj Sets } {x : a } {i j : Obj C} (t : NTrans C Sets (K Sets C a) Γ) (f : I → I) + comm2 : { a : Obj Sets } {x : a } {i j : Obj C} (t : NTrans C Sets (K Sets C a) Γ) (f : I) → ΓMap s Γ f (TMap t i x) ≡ TMap t j x comm2 {a} {x} t f = ≡cong ( λ f → f x ) ( IsNTrans.commute ( isNTrans t ) ) limit1 : (a : Obj Sets) → NTrans C Sets (K Sets C a) Γ → Hom Sets a (snat (ΓObj s Γ) (ΓMap s Γ)) limit1 a t = λ x → record { snmap = λ i → ( TMap t i ) x ; sncommute = λ f → comm2 t f } + t0f=t : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ) i o limit1 a t ] ≈ TMap t i ] + t0f=t = {!!} + limit-uniqueness : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {f : Hom Sets a (snat (ΓObj s Γ) (ΓMap s Γ))} → + ({i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ) i o f ] ≈ TMap t i ]) → Sets [ limit1 a t ≈ f ] + limit-uniqueness = {!!} @@ -228,3 +233,5 @@ + +