Mercurial > hg > Members > kono > Proof > category
changeset 664:9e8276b89cd0
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 22 Oct 2017 23:36:30 +0900 |
parents | 855e497a9c8f |
children | 9904edf40547 |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 8 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Sun Oct 22 22:42:56 2017 +0900 +++ b/SetsCompleteness.agda Sun Oct 22 23:36:30 2017 +0900 @@ -183,6 +183,7 @@ open import Relation.Binary.HeterogeneousEquality as HE renaming ( cong to cong' ; sym to sym' ; subst₂ to subst₂' ; Extensionality to Extensionality' ) using (_≅_;refl) +postulate ≅extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → HE.Extensionality c₂ c₂ snat-cong : {c : Level} {I OC : Set c} @@ -232,7 +233,7 @@ } where comm2 : { a : Obj Sets } {x : a } {i j : Obj C} (t : NTrans C Sets (K Sets C a) Γ) (f : I) → ΓMap s Γ f (TMap t i x) ≡ TMap t j x - comm2 {a} {x} t f = ≡cong ( λ f → f x ) ( IsNTrans.commute ( isNTrans t ) ) + comm2 {a} {x} t f = ≡cong ( λ h → h x ) ( IsNTrans.commute ( isNTrans t ) ) limit1 : (a : Obj Sets) → NTrans C Sets (K Sets C a) Γ → Hom Sets a (snat (ΓObj s Γ) (ΓMap s Γ)) limit1 a t = λ x → record { snmap = λ i → ( TMap t i ) x ; sncommute = λ i j f → comm2 t f } @@ -251,20 +252,20 @@ ≡⟨⟩ record { snmap = λ i → ( TMap t i ) x ; sncommute = λ i j f → comm2 t f } ≡⟨ snat-cong (limit1 a t x) (f x ) ( extensionality Sets ( λ i → eq1 x i )) (eq2 x ) ⟩ - record { snmap = λ i → snmap (f x ) i ; sncommute = λ i j f' → sncommute (f x ) i j f' } + record { snmap = λ i → snmap (f x ) i ; sncommute = λ i j g → sncommute (f x ) i j g } ≡⟨⟩ f x ∎ ) where open import Relation.Binary.PropositionalEquality - postulate ≅extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → HE.Extensionality c₂ c₂ open ≡-Reasoning eq1 : (x : a ) (i : Obj C) → TMap t i x ≡ snmap (f x) i eq1 x i = sym ( ≡cong ( λ f → f x ) cif=t ) - eq2' : ( x : a) → (λ i j f₁ → smap0 (limit1 a t x) f₁ (snmap (limit1 a t x) i) ≡ snmap (limit1 a t x) j) - ≅ (λ i j f₁ → smap0 (f x) f₁ (snmap (f x) i) ≡ snmap (f x) j) - eq2' x = {!!} irr≅ : { c₂ : Level} {d : Set c₂ } { x y : d } ( eq eq' : x ≡ y ) → eq ≅ eq' irr≅ refl refl = refl + eq3 : ( x : a) ( i j : Obj C ) ( g : I ) → ≡cong ( λ h → h x ) ( IsNTrans.commute ( isNTrans t ) {i} {j} {hom← s g } ) + ≅ sncommute (f x) i j g + eq3 x i j g = {!!} -- eq2 : ( x : a) → sncommute (limit1 a t x) ≅ sncommute (f x) - eq2 : ( x : a) → ( λ i j f → ≡cong ( λ f → f x ) ( IsNTrans.commute ( isNTrans t ))) ≅ sncommute (f x) + eq2 : ( x : a) → ( λ i j g → ≡cong ( λ h → h x ) ( IsNTrans.commute ( isNTrans t ) {i} {j} {hom← s g } )) + ≅ ( λ i j g → sncommute (f x) i j g ) eq2 x = {!!}