Mercurial > hg > Members > kono > Proof > category
changeset 261:a2477147dfec
pull back continue
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 20 Sep 2013 16:55:22 +0900 |
parents | a87d3ea9efe4 |
children | e1b08c5e4d2e |
files | pullback.agda |
diffstat | 1 files changed, 25 insertions(+), 21 deletions(-) [+] |
line wrap: on
line diff
--- a/pullback.agda Fri Sep 20 15:39:50 2013 +0900 +++ b/pullback.agda Fri Sep 20 16:55:22 2013 +0900 @@ -24,30 +24,34 @@ -- d -- -pullback-from : (a b c ab : Obj A) +open Equalizer +open Product +open Pullback + +pullback-from : (a b c ab d : Obj A) ( f : Hom A a c ) ( g : Hom A b c ) - ( π1 : Hom A ab a ) ( π2 : Hom A ab b ) + ( π1 : Hom A ab a ) ( π2 : Hom A ab b ) ( e : Hom A d ab ) ( eqa : {a b c : Obj A} → (f g : Hom A a b) → {e : Hom A c a } → Equalizer A e f g ) - ( prod : Product A a b ab π1 π2 ) → Pullback A a b c ab f g π1 π2 -pullback-from a b c ab f g π1 π2 eqa prod = record { + ( prod : Product A a b ab π1 π2 ) → Pullback A a b c d f g + ( A [ π1 o equalizer ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ){e} ) ] ) + ( A [ π2 o equalizer ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ){e} ) ] ) +pullback-from a b c ab d f g π1 π2 e eqa prod = record { commute = commute1 ; p = p1 ; - π1p=π1 = π1p=π11 ; - π2p=π2 = π2p=π21 ; + π1p=π1 = λ {d} {π1'} {π2'} {eq} → π1p=π11 {d} {π1'} {π2'} {eq} ; + π2p=π2 = λ {d} {π1'} {π2'} {eq} → π2p=π21 {d} {π1'} {π2'} {eq} ; uniqueness = uniqueness1 } where - commute1 : A [ A [ f o π1 ] ≈ A [ g o π2 ] ] - commute1 = ? - p1 : { d : Obj A } → { π1' : Hom A d a } { π2' : Hom A d b } → A [ A [ f o π1' ] ≈ A [ g o π2' ] ] → Hom A d ab - p1 {d} { π1' } { π2' } eq = ? - π1p=π11 : { d : Obj A } → { π1' : Hom A d a } { π2' : Hom A d b } → { eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ] } - → A [ A [ π1 o p1 eq ] ≈ π1' ] - π1p=π11 { d } { π1' } { π2' } { eq } = ? - π2p=π21 : { d : Obj A } → { π1' : Hom A d a } { π2' : Hom A d b } → { eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ] } - → A [ A [ π2 o p1 eq ] ≈ π2' ] - π2p=π21 { d } { π1' } { π2' } { eq } = ? - uniqueness1 : { d : Obj A } → ( p' : Hom A d ab ) → { π1' : Hom A d a } { π2' : Hom A d b } → { eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ] } - → { π1p=π1' : A [ A [ π1 o p' ] ≈ π1' ] } - → { π2p=π2' : A [ A [ π2 o p' ] ≈ π2' ] } - → A [ p1 eq ≈ p' ] - uniqueness1 { d } p' { π1' } { π2' } { eq }{ π1p=π1' } { π2p=π2' } = ? + commute1 : A [ A [ f o A [ π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] ] ≈ A [ g o A [ π2 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] ] ] + commute1 = {!!} + p1 : {d' : Obj A} {π1' : Hom A d' a} {π2' : Hom A d' b} → A [ A [ f o π1' ] ≈ A [ g o π2' ] ] → Hom A d' d + p1 {d'} { π1' } { π2' } eq = -- _×_ prod π1' π2' + π1p=π11 : {d₁ : Obj A} {π1' : Hom A d₁ a} {π2' : Hom A d₁ b} {eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ]} → A [ A [ A [ π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ]) {e} ) ] o p1 eq ] ≈ π1' ] + π1p=π11 = {!!} -- π1fxg=f prod + π2p=π21 : {d₁ : Obj A} {π1' : Hom A d₁ a} {π2' : Hom A d₁ b} {eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ]} → A [ A [ A [ π2 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ]) {e} ) ] o p1 eq ] ≈ π2' ] + π2p=π21 = {!!} -- π2fxg=g prod + uniqueness1 : {d₁ : Obj A} (p' : Hom A d₁ d) {π1' : Hom A d₁ a} {π2' : Hom A d₁ b} {eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ]} → + {eq1 : A [ A [ A [ π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] o p' ] ≈ π1' ]} → + {eq2 : A [ A [ A [ π2 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] o p' ] ≈ π2' ]} → + A [ p1 eq ≈ p' ] + uniqueness1 = {!!}