Mercurial > hg > Members > kono > Proof > category
changeset 916:a79b08e12447
reverse functor of CS
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 04 May 2020 07:48:50 +0900 |
parents | fa302d99fa40 |
children | 8fa27a146c84 |
files | CCCGraph.agda |
diffstat | 1 files changed, 19 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph.agda Sat May 02 09:30:44 2020 +0900 +++ b/CCCGraph.agda Mon May 04 07:48:50 2020 +0900 @@ -252,6 +252,18 @@ Sets [ f ≈ f' ] → Sets [ (λ x y → f (x , y)) ≈ (λ x y → f' (x , y)) ] *-cong refl = refl + csc-origin : {a b : Obj PL} → Hom CSC a b → {p : Arrows a b } → Hom PL a b + csc-origin {a} {b} f {p} with p + csc-origin {a} {a} f {p} | id a = id a + csc-origin {a} {⊤} f {p} | ○ a = ○ a + csc-origin {a} {c ∧ d} f {p} | < g , h > = < csc-origin (λ x → (proj₁ (f x))) {g} , csc-origin (λ x → (proj₂ (f x))) {h} > + csc-origin {a} {atom b} f {p} | iv {_} {_} {d} (arrow {e} {b} x) g = iv (arrow x) ( csc-origin {!!} {g} ) where + lemma : ? + lemma = ? + csc-origin {a} {b} f {p} | iv π g = iv π ( csc-origin (λ x → (f x , {!!} ) ) {g} ) + csc-origin {a} {b} f {p} | iv π' g = {!!} + csc-origin {a} {b} f {p} | iv ε g = {!!} + csc-origin {a} {c <= b} f {p} | iv {_} {_} {d} (x *) g = iv ( ( csc-origin (λ x → f {!!} (proj₂ x)) {x} ) * ) ( csc-origin (λ y → {!!} ) {{!!}} ) -- f : fobj a → fobj b → fobj c --- @@ -419,16 +431,15 @@ cobj {g} {c} f (x ∧ y) = CCC._∧_ (ccc c) (cobj {g} {c} f x) (cobj {g} {c} f y) cobj {g} {c} f (b <= a) = CCC._<=_ (ccc c) (cobj {g} {c} f b) (cobj {g} {c} f a) c-map : {g : Obj Grph} {c : Obj (Cart {c₁} {c₁} {c₁})} {A B : Obj (cat (csc g))} - → (f : Hom Grph g (FObj UX c) ) → Hom (cat (csc g)) A B → Hom (cat c) (cobj {g} {c} f A) (cobj {g} {c} f B) - c-map {g} {c} {atom a} {atom b} f y with y (λ w → {!!} ) a - c-map {g} {c} {atom a} {atom a} f y | id a = id1 (cat c) (cobj {g} {c} f (atom a)) - c-map {g} {c} {atom a} {atom b} f y | next {a} {d} {b} x t = (cat c) [ emap f x o {!!} ] - c-map {g} {c} {⊤} {atom x} f y = {!!} - c-map {g} {c} {a ∧ b} {atom x} f y = {!!} - c-map {g} {c} {b <= a} {atom x} f y = {!!} + → (f : Hom Grph g (FObj UX c) ) → (y : Hom (cat (csc g)) A B) → Hom (cat c) (cobj {g} {c} f A) (cobj {g} {c} f B) + c-map {g} {c} {a} {atom b} f y = {!!} where + c-map-b : (a : ccc-from-graph.Objs g ) → (y : Hom (cat (csc g)) a (atom b) ) + → Hom (cat c) (cobj {g} {c} f a) (cobj {g} {c} f (atom b)) + c-map-b a y with FObj (ccc-from-graph.CS g ) a + ... | t = {!!} c-map {g} {c} {a} {⊤} f x = CCC.○ (ccc c) (cobj f a) c-map {g} {c} {a} {x ∧ y} f z = CCC.<_,_> (ccc c) (c-map f (λ w → proj₁ (z w))) (c-map f (λ w → proj₂ (z w))) - c-map {g} {c} {d} {b <= a} f x = CCC._* (ccc c) ( c-map f (λ w → (x (proj₁ w) (proj₂ w)) )) + c-map {g} {c} {d} {b <= a} f x = CCC._* (ccc c) ( c-map f (λ w → x (proj₁ w) (proj₂ w))) solution : {g : Obj Grph} {c : Obj Cart} → Hom Grph g (FObj UX c) → Hom Cart (csc g) c solution {g} {c} f = record { cmap = record { FObj = λ x → cobj {g} {c} f x ; FMap = c-map {g} {c} f ; isFunctor = {!!} } ; ccf = {!!} }