Mercurial > hg > Members > kono > Proof > category
changeset 801:aa4fbd007247
using setoid
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 24 Apr 2019 11:09:41 +0900 |
parents | bca72fffdc1a |
children | 7bc41fc7b563 |
files | CCChom.agda |
diffstat | 1 files changed, 65 insertions(+), 114 deletions(-) [+] |
line wrap: on
line diff
--- a/CCChom.agda Tue Apr 23 16:34:38 2019 +0900 +++ b/CCChom.agda Wed Apr 24 11:09:41 2019 +0900 @@ -607,73 +607,12 @@ ε : {a b : Objs } → arrow ((a <= b) ∧ b ) a _* : {a b c : Objs } → arrow (c ∧ b ) a → arrow c ( a <= b ) - data Arrow { obj : Set } { hom : obj → obj → Set } : ( a b : obj ) → Set where - id : ( a : obj ) → Arrow a a - mono : { a b : obj } → hom a b → Arrow a b - connected : {a b : obj } → {c : obj} → hom b c → Arrow {obj} {hom} a b → Arrow a c - - _+_ : { obj : Set } { hom : obj → obj → Set } {a b c : obj } (f : (Arrow {obj} {hom} b c )) → (g : (Arrow {obj} {hom} a b )) → Arrow {obj} {hom} a c - id a + id .a = id a - id b + mono x = mono x - id a + connected x y = connected x y - mono x + id a = mono x - mono x + mono y = connected x (mono y) - mono x + connected y z = connected x ( connected y z ) - connected x y + z = connected x ( y + z ) - - data _==_ : {a b : Objs } → (f g : Arrow {Objs} {arrow} a b ) → Set where - rrefl : {a b : Objs } → {f : Arrow {Objs} {arrow} a b } → f == f - irefl : {a : Objs } → ( id a ) == ( id a ) - mrefl : {a b : Objs } {x : arrow a b } → ( mono x ) == ( mono x ) - trefl : {a : Objs } { x y : Arrow a ⊤ } → x == y - crefl : {a b c : Objs } { x : arrow b c } → {f g : Arrow a b } → f == g → ( connected x f ) == ( connected x g ) - - ==sym : {a b : Objs } → {f g : Arrow {Objs} {arrow} a b } → f == g → g == f - ==sym rrefl = rrefl - ==sym irefl = irefl - ==sym mrefl = mrefl - ==sym trefl = trefl - ==sym (crefl x) = crefl ( ==sym x ) - ==trans : {a b : Objs } → {f g h : Arrow {Objs} {arrow} a b } → f == g → g == h → f == h - ==trans rrefl rrefl = rrefl - ==trans rrefl irefl = rrefl - ==trans rrefl mrefl = rrefl - ==trans rrefl trefl = trefl - ==trans rrefl (crefl y) = crefl y - ==trans irefl rrefl = rrefl - ==trans irefl irefl = rrefl - ==trans irefl trefl = trefl - ==trans mrefl rrefl = rrefl - ==trans mrefl mrefl = rrefl - ==trans mrefl trefl = trefl - ==trans trefl rrefl = trefl - ==trans trefl mrefl = trefl - ==trans trefl trefl = trefl - ==trans (crefl x) rrefl = (crefl x) - ==trans (crefl x) trefl = trefl - ==trans (crefl x) (crefl y) = crefl ( ==trans x y ) - ==trans trefl irefl = trefl - ==trans trefl (crefl y) = trefl + open import discrete + open graphtocat - assoc-+ : {a b c d : Objs } - (f : (Arrow {Objs} {arrow} c d )) → (g : (Arrow {Objs} {arrow} b c )) → (h : (Arrow {Objs} {arrow} a b )) → - ( f + (g + h)) == ((f + g) + h ) - assoc-+ (id a) (id .a) (id .a) = irefl - assoc-+ (id a) (id .a) (mono x) = mrefl - assoc-+ (id a) (id .a) (connected h h₁) = crefl rrefl - assoc-+ (id a) (mono x) (id a₁) = mrefl - assoc-+ (id a) (mono x) (mono x₁) = crefl mrefl - assoc-+ (id a) (mono x) (connected h h₁) = crefl rrefl - assoc-+ (id a) (connected g h) _ = crefl rrefl - assoc-+ (mono x) (id a) (id .a) = mrefl - assoc-+ (mono x) (id a) (mono x₁) = crefl mrefl - assoc-+ (mono x) (id a) (connected h h₁) = crefl rrefl - assoc-+ (mono x) (mono x₁) (id a) = crefl mrefl - assoc-+ (mono x) (mono x₁) (mono x₂) = crefl ( crefl mrefl ) - assoc-+ (mono x) (mono x₁) (connected h h₁) = crefl ( crefl rrefl ) - assoc-+ (mono x) (connected g g₁) _ = crefl rrefl - assoc-+ (connected f g) (x) (y) = crefl ( assoc-+ g x y ) + GC : Category Level.zero Level.zero Level.zero + GC = GraphtoCat Objs arrow product : {a b c : Objs } → Arrow c a → Arrow c b → Arrow {Objs} {arrow} c ( a ∧ b ) product {a} {b} {c} y (connected {_} {_} {d} x g) = connected (< π , x ・ π' >) ( product y g ) @@ -688,61 +627,74 @@ star {a} {b} {c} (mono x) = mono ( x * ) star {a} {b} {c} (connected {_} {d} {_} x y) = connected ( ( x ・ ε ) * ) ( star y ) + + data _==_ : {a b : Objs } → (f g : Arrow {Objs} {arrow} a b ) → Set where + rrefl : {a b : Objs } → {f : Arrow {Objs} {arrow} a b } → f == f + trefl : {a b : Objs} → {h i : Arrow {Objs} {arrow} ⊤ b } {f g : Arrow {Objs} {arrow} a ⊤ } → h == i → (h + f) == (i + g) + + ≡→== : {a b : Objs } → {f g : Arrow {Objs} {arrow} a b } → f ≡ g → f == g + ≡→== refl = rrefl + + r== : {a b : Objs } → { f : Arrow {Objs} {arrow} a b } → f == f + r== = ≡→== refl + + s== : {a b : Objs } → { f g : Arrow {Objs} {arrow} a b } → f == g → g == f + s== rrefl = rrefl + s== (trefl rrefl) = trefl rrefl + s== (trefl (trefl eq)) = trefl {!!} + + t== : {a b : Objs } → { i j k : Arrow {Objs} {arrow} a b } → i == j → j == k → i == k + t== rrefl rrefl = rrefl + t== eq eq1 = {!!} + + ctcong : {a b c : Objs } → { f g : Arrow {Objs} {arrow} a b } → { x : arrow b c } → f == g → connected x f == connected x g + ctcong rrefl = rrefl + ctcong (trefl eq) = trefl {!!} + + ccc-e2 : {a : Objs } → ∀ { f : Arrow {Objs} {arrow} a ⊤ } → f == mono (○ a) + ccc-e2 {a} {f} = {!!} + + -- Reflexive : ∀ {a ℓ} {A : Set a} → Rel A ℓ → Set _ + -- Reflexive _∼_ = ∀ {x} → x ∼ x + + open import Relation.Binary.Core + open import Relation.Binary + import Relation.Binary.EqReasoning as EqR + + cccIEQ : {a b : Objs } → Setoid Level.zero Level.zero + cccIEQ {a} {b} = record { + Carrier = Arrow {Objs} {arrow} a b + ; _≈_ = _==_ + ; isEquivalence = record {refl = r== ; trans = t== ; sym = s== } + } + + GraphtoCCC : Category Level.zero Level.zero Level.zero GraphtoCCC = record { Obj = Objs ; - Hom = λ a b → Arrow a b ; - _o_ = λ{a} {b} {c} x y → _+_ x y ; - _≈_ = λ x y → x == y ; + Hom = λ a b → Arrow {Objs} {arrow} a b ; + _o_ = _+_ ; + _≈_ = _==_ ; Id = λ{a} → id a ; isCategory = record { - isEquivalence = record {refl = rrefl ; trans = ==trans ; sym = ==sym } ; - identityL = λ{a b f} → identityL {a} {b} {f} ; - identityR = λ{a b f} → identityR {a} {b} {f} ; - o-resp-≈ = λ{a b c f g h i} → o-resp-≈ {a} {b} {c} {f} {g} {h} {i} ; - associative = λ{a b c d f g h } → assoc-+ f g h + isEquivalence = record {refl = r== ; trans = t== ; sym = s== } + ; identityL = identityL + ; identityR = identityR + ; o-resp-≈ = λ{a b c f g h i} → {!!} + ; associative = λ{a b c d f g h } → {!!} } - } where - identityL : {A B : Objs } {f : ( Arrow A B) } → ((id B) + f) == f - identityL {_} {_} {id a} = irefl - identityL {_} {_} {mono x} = mrefl - identityL {_} {_} {connected x f} = crefl rrefl - identityR : {A B : Objs } {f : ( Arrow {Objs} {arrow} A B) } → ( f + id A ) == f - identityR {_} {_} {id a} = irefl - identityR {_} {_} {mono x} = mrefl - identityR {_} {_} {connected x f} = crefl ( identityR ) - o-resp-≈ : {A B C : Objs } {f g : ( Arrow A B)} {h i : ( Arrow B C)} → - f == g → h == i → ( h + f ) == ( i + g ) - o-resp-≈ {_} {_} {_} {f} {.f} {h} {.h} rrefl rrefl = rrefl - o-resp-≈ {_} {_} {_} {f} {.f} {.(id _)} {.(id _)} rrefl irefl = rrefl - o-resp-≈ {_} {_} {_} {f} {.f} {.(mono _)} {.(mono _)} rrefl mrefl = rrefl - o-resp-≈ {_} {_} {_} {f} {.f} {h} {i} rrefl trefl = trefl - o-resp-≈ {_} {_} {_} {f} {.f} {.(connected _ _)} {.(connected _ _)} rrefl (crefl h=i) = crefl ( o-resp-≈ rrefl h=i ) - o-resp-≈ {_} {_} {_} {.(id _)} {.(id _)} {h} {.h} irefl rrefl = rrefl - o-resp-≈ {_} {_} {_} {.(id _)} {.(id _)} {.(id _)} {.(id _)} irefl irefl = rrefl - o-resp-≈ {_} {_} {_} {.(id _)} {.(id _)} {.(mono _)} {.(mono _)} irefl mrefl = rrefl - o-resp-≈ {_} {_} {_} {.(id _)} {.(id _)} {h} {i} irefl trefl = trefl - o-resp-≈ {_} {_} {_} {.(id _)} {.(id _)} {.(connected _ _)} {.(connected _ _)} irefl (crefl h=i) = crefl ( o-resp-≈ rrefl h=i ) - o-resp-≈ {_} {_} {_} {.(mono _)} {.(mono _)} {h} {.h} mrefl rrefl = rrefl - o-resp-≈ {_} {_} {_} {.(mono _)} {.(mono _)} {.(id _)} {.(id _)} mrefl irefl = rrefl - o-resp-≈ {_} {_} {_} {.(mono _)} {.(mono _)} {.(mono _)} {.(mono _)} mrefl mrefl = rrefl - o-resp-≈ {_} {_} {_} {.(mono _)} {.(mono _)} {h} {i} mrefl trefl = trefl - o-resp-≈ {_} {_} {_} {.(mono _)} {.(mono _)} {.(connected _ _)} {.(connected _ _)} mrefl (crefl h=i) = crefl ( o-resp-≈ rrefl h=i ) - o-resp-≈ {_} {_} {_} {.(connected _ _)} {.(connected _ _)} {id a} {.(id a)} (crefl f=g) rrefl = crefl f=g - o-resp-≈ {_} {_} {_} {.(connected _ _)} {.(connected _ _)} {mono x} {.(mono x)} (crefl f=g) rrefl = crefl ( crefl f=g ) - o-resp-≈ {_} {_} {_} {.(connected _ _)} {.(connected _ _)} {connected x h} {.(connected x h)} (crefl f=g) rrefl = - crefl ( o-resp-≈ (crefl f=g) rrefl ) - o-resp-≈ {_} {_} {_} {.(connected _ _)} {.(connected _ _)} {.(id _)} {.(id _)} (crefl f=g) irefl = crefl f=g - o-resp-≈ {_} {_} {_} {.(connected _ _)} {.(connected _ _)} {.(mono _)} {.(mono _)} (crefl f=g) mrefl = crefl (crefl f=g) - o-resp-≈ {_} {_} {_} {.(connected _ _)} {.(connected _ _)} {h} {i} (crefl f=g) trefl = trefl - o-resp-≈ {_} {_} {_} {.(connected _ _)} {.(connected _ _)} {.(connected _ _)} {.(connected _ _)} (crefl f=g) (crefl h=i) = - crefl ( o-resp-≈ (crefl f=g) h=i ) - o-resp-≈ {_} {_} {_} {f} {g} {h} {.h} trefl rrefl = {!!} - o-resp-≈ {_} {_} {_} {f} {g} {.(id ⊤)} {.(id ⊤)} trefl irefl = {!!} - o-resp-≈ {_} {_} {_} {f} {g} {.(mono _)} {.(mono _)} trefl mrefl = {!!} - o-resp-≈ {_} {_} {_} {f} {g} {h} {i} trefl trefl = trefl - o-resp-≈ {_} {_} {_} {f} {g} {.(connected _ _)} {.(connected _ _)} trefl (crefl h=i) = {!!} + } where + identityL : {a b : Objs } → { f : Arrow {Objs} {arrow} a b } → (id b + f) == f + identityL {a} {.a} {id a} = rrefl + identityL {a} {b} {mono x} = rrefl + identityL {a} {b} {connected x f} = rrefl + identityR : {a b : Objs } → { f : Arrow {Objs} {arrow} a b } → (f + id a ) == f + identityR {a} {.a} {id a} = rrefl + identityR {a} {b} {mono x} = rrefl + identityR {a} {b} {connected x f} = ctcong identityR +-- ≈⟨ {!!} ⟩ +-- ∎ where open EqR cccIEQ -- open IsEquivalence cccIEQ -- GLCCC : CCC GraphtoCCC -- GLCCC = record { @@ -758,7 +710,6 @@ -- ; isCCC = isc -- } where -- GC = GraphtoCCC --- isc : ? -- IsCCC GC ⊤ (λ f → mono (○ f)) _∧_ ( λ f g → product f g) (mono π) (mono π') _<=_ star (mono ε ) -- e2 : {a : Obj GC } → ∀ { f : Hom GC a ⊤ } → GC [ f ≈ mono (○ a) ] -- e2 {.⊤} {id .⊤} = {!!} -- e2 {a} {mono x} = {!!}