Mercurial > hg > Members > kono > Proof > category
changeset 124:aaeb92b58647
on going
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 02 Aug 2013 08:50:22 +0900 |
parents | 44c58c27d12d |
children | dec1f5db1edd |
files | comparison-em.agda |
diffstat | 1 files changed, 12 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/comparison-em.agda Fri Aug 02 08:36:44 2013 +0900 +++ b/comparison-em.agda Fri Aug 02 08:50:22 2013 +0900 @@ -49,18 +49,19 @@ emkobj : Obj B -> EMObj emkobj b = record { - a = FObj U^K b ; phi = FMap U^K (TMap ε^K b) ; isAlgebra = record { identity = identity1; eval = eval1 } + a = FObj U^K b ; phi = FMap U^K (TMap ε^K b) ; isAlgebra = record { identity = identity1 b; eval = eval1 b } } where - identity1 : ? - identity1 = ? - eval1 : ? - eval1 = ? + identity1 : (b : Obj B) -> A [ A [ (FMap U^K (TMap ε^K b)) o TMap η^K (FObj U^K b) ] ≈ id1 A (FObj U^K b) ] + identity1 b = {!!} + eval1 : (b : Obj B) -> A [ A [ (FMap U^K (TMap ε^K b)) o TMap μ^K' (FObj U^K b) ] ≈ A [ (FMap U^K (TMap ε^K b)) o FMap T^K (FMap U^K (TMap ε^K b)) ] ] + eval1 b = {!!} +open EMObj emkmap : {a b : Obj B} (f : Hom B a b) -> EMHom (emkobj a) (emkobj b) -emkmap {a} {b} f = record { EMap = FMap U^K f ; homomorphism = homomorphism1 +emkmap {a} {b} f = record { EMap = FMap U^K f ; homomorphism = homomorphism1 a b f } where - homomorphism1 : ? - homomorphism1 = ? + homomorphism1 : (a b : Obj B) (f : Hom B a b) -> A [ A [ (φ (emkobj b)) o FMap T^K (FMap U^K f) ] ≈ A [ (FMap U^K f) o (φ (emkobj a)) ] ] + homomorphism1 a b f = {!!} K^T : Functor B Eilenberg-MooreCategory K^T = record { @@ -76,21 +77,21 @@ identity {a} = let open ≈-Reasoning (A) in begin EMap (emkmap (id1 B a)) - ≈⟨ ? ⟩ + ≈⟨ {!!} ⟩ EMap (EM-id {emkobj a}) ∎ ≈-cong : {a b : Obj B} -> {f g : Hom B a b} → B [ f ≈ g ] → emkmap f ≗ emkmap g ≈-cong {a} {b} {f} {g} f≈g = let open ≈-Reasoning (A) in begin EMap (emkmap f) - ≈⟨ ? ⟩ + ≈⟨ {!!} ⟩ EMap (emkmap g) ∎ distr1 : {a b c : Obj B} {f : Hom B a b} {g : Hom B b c} → ( (emkmap (B [ g o f ])) ≗ (emkmap g ∙ emkmap f) ) distr1 {a} {b} {c} {f} {g} = let open ≈-Reasoning (A) in begin EMap (emkmap (B [ g o f ] )) - ≈⟨ ? ⟩ + ≈⟨ {!!} ⟩ EMap (emkmap g ∙ emkmap f) ∎