Mercurial > hg > Members > kono > Proof > category
changeset 1087:af001078044b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 16 May 2021 22:01:28 +0900 |
parents | 6fbb7fdf92d3 |
children | ed657b63315d |
files | src/Polynominal.agda |
diffstat | 1 files changed, 8 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Polynominal.agda Sun May 16 13:46:39 2021 +0900 +++ b/src/Polynominal.agda Sun May 16 22:01:28 2021 +0900 @@ -234,10 +234,15 @@ f' ∙ < π , π' > ≈⟨ cdr (IsCCC.π-id isCCC) ⟩ f' ∙ id1 A _ ≈⟨ idR ⟩ f' ∎ ) where - xf : (fp : φ x (x ∙ ○ b)) → xnef x fp - xf = {!!} + -- (phi : φ x f) → xnef x phi + xf : (g : Hom A b a) → (fp : φ x g) → g ≅ (x ∙ ○ b) → xnef x fp + xf .((A Category.o x) (CCC.○ C b)) (i .((A Category.o x) (CCC.○ C b))) _≅_.refl = {!!} -- x ≅ x ∙ (○ b) → ⊥ + xf g ii eq = lift tt + xf g (iii fp fp₁) eq = {!!} + xf g (iv fp fp₁) eq = {!!} + xf g (v fp) eq = {!!} u2 : k x {x ∙ ○ b} (i _) ≈ k x {x} ii ∙ < π , k x {○ b} (i _) > - u2 = ki x (x ∙ ○ b) (iv ii (i _)) xf + u2 = ki x (x ∙ ○ b) (iv ii (i _)) (λ gp → xf (x ∙ ○ b) gp HE.refl ) -- functional completeness ε form --