Mercurial > hg > Members > kono > Proof > category
changeset 204:b2874c5086ea
embedding done?
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 01 Sep 2013 16:14:08 +0900 |
parents | 1c16d18a8d67 |
children | 242adb6669da |
files | yoneda.agda |
diffstat | 1 files changed, 12 insertions(+), 29 deletions(-) [+] |
line wrap: on
line diff
--- a/yoneda.agda Sun Sep 01 15:21:53 2013 +0900 +++ b/yoneda.agda Sun Sep 01 16:14:08 2013 +0900 @@ -298,37 +298,20 @@ -- F2Nat is bijection so FMap YonedaFunctor also ( using functional extensionality ) --- Full embedding of Yoneda Functor requires injective on Object, that is +-- Full embedding of Yoneda Functor requires injective on Object, +-- +-- But we cannot prove like this -- FObj YonedaFunctor a ≡ FObj YonedaFunctor b → a ≡ b - -dom-equivalence : {a b : Obj A} → {f g : Hom A a b} → A [ f ≈ g ] → Category.dom A f ≡ Category.dom A g -dom-equivalence eq = refl - --- dom-equivalence1 : {a b : Obj A} → {f : Hom A a a} -> {g : Hom A a b} → A [ f ≈ g ] → Category.dom A f ≡ Category.dom A g --- dom-equivalence1 eq = ? - -equive-elm : ∀{n} {a b : Set n} → (f : a ) → a ≡ b → b -equive-elm f refl = f - -equive-arrow : {a b : Obj A } → (f : Hom A a b ) → Hom A a b ≡ Hom A a a → Hom A a a -equive-arrow f eq = equive-elm f eq +-- YondaLemma2 : {a b x : Obj A } → (FObj (FObj YonedaFunctor a) x) ≡ (FObj (FObj YonedaFunctor b ) x) → +-- a ≡ b +-- YondaLemma2 {a} {b} eq = {!!} +-- +-- Instead we prove +-- inv ( FObj YonedaFunctor a ) ≡ a --- equive-hom : {a b : Obj A } → {f : Hom A a b } → Hom A a b ≡ Hom A a a → a ≡ b --- equive-hom {a} {b} {f} eq = {!!} - -inv : {a x : Obj A} ( f : FObj (FObj YonedaFunctor a) x ) → Obj A -inv {a} {x} f = Category.cod A f +inv : {a x : Obj A} ( f : FObj (FObj YonedaFunctor a) x) → Obj A +inv {a} f = Category.cod A f ---YondaLemma2 : {a b : Obj A } → (λ x → FObj (FObj YonedaFunctor a) x) ≡ (λ x → FObj (FObj YonedaFunctor b ) x) → --- a ≡ b ---YondaLemma2 {a} {b} eq = ≡-cong inv ? - -inv-yobj : {a x : Obj A} → Hom A a x → Obj A -inv-yobj {a} {x} _ = a - -YonedaLemma21 : (a x : Obj A) { f : ( FObj (FObj YonedaFunctor a) x) } → Category.cod A f ≡ a +YonedaLemma21 : (a x : Obj A) { f : ( FObj (FObj YonedaFunctor a) x) } → inv f ≡ a YonedaLemma21 a x {f} = refl ---- f ≡ g f x ≡ g x - --- I cannot prove this, please help.