Mercurial > hg > Members > kono > Proof > category
changeset 78:b3c023f7c929
on going
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 27 Jul 2013 03:52:24 +0900 |
parents | 528c7e27af91 |
children | 84723389e3c9 |
files | nat.agda |
diffstat | 1 files changed, 33 insertions(+), 23 deletions(-) [+] |
line wrap: on
line diff
--- a/nat.agda Fri Jul 26 22:07:21 2013 +0900 +++ b/nat.agda Sat Jul 27 03:52:24 2013 +0900 @@ -203,7 +203,7 @@ record KHom (a : Obj A) (b : Obj A) - : Set (suc (c₂ ⊔ c₁)) where + : Set c₂ where field KMap : Hom A a ( FObj T b ) @@ -253,7 +253,7 @@ (f * (g * h)) ⋍ ((f * g) * h) Kassoc {_} {_} {_} {_} {f} {g} {h} = Lemma9 (KMap f) (KMap g) (KMap h) -KleisliCategory : Category c₁ (suc (c₂ ⊔ c₁)) ℓ +KleisliCategory : Category c₁ c₂ ℓ KleisliCategory = record { Obj = Obj A ; Hom = KHom @@ -376,30 +376,40 @@ KMap ( ffmap g * ffmap f ) ∎ -nat-ε : NTrans KleisliCategory KleisliCategory identityFunctor ( F_T ○ U_T ) -nat-ε = record { TMap = \a -> id1 A ( FObj T a ) ; isNTrans = isNTrans } where - naturality : ? - naturality = ? - isNtrans : IsNTrans KleisliCategory KleisliCategory identityFunctor ( F_T ○ U_T ) - isNtrans = record { naturality = naturality } + +nat-η : NTrans A A identityFunctor ( U_T ○ F_T ) +nat-η = record { TMap = \x -> TMap η x ; isNTrans = isNTrans1 } where + isNTrans1 : IsNTrans A A identityFunctor ( U_T ○ F_T ) (\a -> TMap η a) + isNTrans1 = {!!} -Lemma11 : {a : Obj A } -> A [ TMap μ a ≈ FMap U_T ( TMap nat-ε ( FObj F_T a ) ) ] -Lemma11 = ? +tmap-ε : (a : Obj A) -> KHom ? ? +tmap-ε a = record { KMap = id1 A (FObj T a) } + +nat-ε : NTrans KleisliCategory KleisliCategory ( F_T ○ U_T ) identityFunctor +nat-ε = record { TMap = \a -> tmap-ε a; isNTrans = isNTrans1 } where + naturality : {a b : Obj A} {f : KHom a b} + → (f * ( tmap-ε a ) ) ⋍ (( tmap-ε b ) * ( FMap (F_T ○ U_T) f ) ) + naturality = {!!} + isNTrans1 : IsNTrans KleisliCategory KleisliCategory ( F_T ○ U_T ) identityFunctor (\a -> tmap-ε a ) + isNTrans1 = record { naturality = naturality } ---Lemma12 : T = F_T ○ U_T ---Lemma12 = ? +Lemma11 : {x : Obj A } -> A [ TMap μ x ≈ FMap U_T ( TMap nat-ε ( FObj F_T x ) ) ] +Lemma11 = {!!} + +Lemma12 : T ≃ (U_T ○ F_T) +Lemma12 = {!!} -Resoution_T : Adjunction A KleisliCategory U_T F_T η nat-ε -Resoution_T = record { - isAdjunction = record { - adjoint1 = adjoint1 ; - adjoint2 = adjoint2 - } - } where - adjoint1 : ? - adjoint1 = ? - adjoint2 : ? - adjoint2 = ? +-- Resoution_T : Adjunction A KleisliCategory U_T F_T nat-η nat-ε +-- Resoution_T = record { +-- isAdjunction = record { +-- adjoint1 = adjoint1 ; +-- adjoint2 = adjoint2 +-- } +-- } where +-- adjoint1 : ? +-- adjoint1 = ? +-- adjoint2 : ? +-- adjoint2 = ?