Mercurial > hg > Members > kono > Proof > category
changeset 628:b99660fa14e1
remove arrow's yellow
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 26 Jun 2017 17:18:23 +0900 |
parents | efa1f2103a83 |
children | 693020c766d2 |
files | freyd.agda freyd2.agda |
diffstat | 2 files changed, 18 insertions(+), 16 deletions(-) [+] |
line wrap: on
line diff
--- a/freyd.agda Sun Jun 25 13:03:33 2017 +0900 +++ b/freyd.agda Mon Jun 26 17:18:23 2017 +0900 @@ -1,8 +1,7 @@ open import Category -- https://github.com/konn/category-agda open import Level -module freyd {c₁ c₂ ℓ : Level} - where +module freyd where open import cat-utility open import HomReasoning @@ -24,10 +23,11 @@ -- pre-initial record PreInitial {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) - (F : Functor A A ) : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where + {preini : Obj A} (F : Functor A A) : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where field - preinitialObj : Obj A - preinitialArrow : ∀{ a : Obj A } → Hom A ( FObj F (preinitialObj)) a + preinitialArrow : ∀{a : Obj A } → Hom A ( FObj F preini) a + preinitialObj : Obj A + preinitialObj = preini -- initial object @@ -50,7 +50,7 @@ initialFromPreInitialFullSubcategory : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (comp : Complete A A) (SFS : SmallFullSubcategory A ) → - (PI : PreInitial A (SFSF SFS )) → HasInitialObject A (limit-c comp (SFSF SFS)) + (PI : PreInitial A {limit-c comp (SFSF SFS)} (SFSF SFS )) → HasInitialObject A (limit-c comp (SFSF SFS)) initialFromPreInitialFullSubcategory A comp SFS PI = record { initial = initialArrow ; uniqueness = λ a f → lemma1 a f
--- a/freyd2.agda Sun Jun 25 13:03:33 2017 +0900 +++ b/freyd2.agda Mon Jun 26 17:18:23 2017 +0900 @@ -185,7 +185,7 @@ KUhasInitialObj : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (a : Obj A ) - → HasInitialObject {c₁} {c₂} {ℓ} ( K (Sets) A * ↓ (Yoneda A a) ) ( record { obj = a ; hom = λ x → id1 A a } ) + → HasInitialObject ( K (Sets) A * ↓ (Yoneda A a) ) ( record { obj = a ; hom = λ x → id1 A a } ) KUhasInitialObj {c₁} {c₂} {ℓ} A a = record { initial = λ b → initial0 b ; uniqueness = λ b f → unique b f @@ -247,21 +247,23 @@ ≡-cong = Relation.Binary.PropositionalEquality.cong +ub : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (U : Functor A (Sets {c₂}) ) (b : Obj A) (x : FObj U b ) → Hom Sets (FObj (K Sets A *) b) (FObj U b) +ub A U b x OneObj = x + UisRepresentable : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (U : Functor A (Sets {c₂}) ) - (SFS : SmallFullSubcategory {c₁} {c₂} {ℓ} ( K (Sets {c₂}) A * ↓ U) ) - (PI : PreInitial {c₁} {c₂} {ℓ} ( K (Sets) A * ↓ U) (SFSF SFS )) + (SFS : SmallFullSubcategory ( K (Sets {c₂}) A * ↓ U) ) + (pi : Obj ( K (Sets) A * ↓ U) ) + (PI : PreInitial ( K (Sets) A * ↓ U) {pi} (SFSF SFS)) → Representable A U (obj (preinitialObj PI )) -UisRepresentable A U SFS PI = record { +UisRepresentable A U SFS pi PI = record { repr→ = record { TMap = tmap1 ; isNTrans = record { commute = comm1 } } ; repr← = record { TMap = tmap2 ; isNTrans = record { commute = comm2 } } - ; reprId→ = λ {y} → ? - ; reprId← = λ {y} → ? + ; reprId→ = {!!} + ; reprId← = {!!} } where - ub : (b : Obj A) (x : FObj U b ) → Hom Sets (FObj (K Sets A *) b) (FObj U b) - ub b x OneObj = x - tmap1 : (b : Obj A) → Hom Sets (FObj U b) (FObj (Yoneda A (obj (preinitialObj PI))) b) - tmap1 b x = arrow ( SFSFMap← SFS ( preinitialArrow PI ) ) + tmap1 : (b : Obj A) → Hom Sets (FObj U b) (FObj (Yoneda A (obj pi)) b) + tmap1 b x = arrow ( SFSFMap← SFS ( preinitialArrow PI {FObj (SFSF SFS) (record { obj = b ; hom = ub A U b x}) } )) tmap2 : (b : Obj A) → Hom Sets (FObj (Yoneda A (obj (preinitialObj PI))) b) (FObj U b) tmap2 b x = ( FMap U x ) ( hom ( preinitialObj PI ) OneObj ) comm1 : {a b : Obj A} {f : Hom A a b} → Sets [ Sets [ FMap (Yoneda A (obj (preinitialObj PI))) f o tmap1 a ] ≈ Sets [ tmap1 b o FMap U f ] ]