Mercurial > hg > Members > kono > Proof > category
changeset 494:ba6a67523523
unique direction 2 done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 14 Mar 2017 12:14:57 +0900 |
parents | de9ce7e0d97c |
children | 633df882db86 |
files | freyd1.agda |
diffstat | 1 files changed, 28 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/freyd1.agda Tue Mar 14 11:43:46 2017 +0900 +++ b/freyd1.agda Tue Mar 14 12:14:57 2017 +0900 @@ -170,9 +170,32 @@ → ( glimit : LimitPreserve A I C G ) (a : CommaObj) → ( t : NTrans I CommaCategory (K CommaCategory I a) Γ ) → NTrans I C (K C I (FObj F (obj a))) (G ○ FIA Γ) gnat {I} comp Γ glimit a t = record { - TMap = ? - ; isNTrans = record { commute = ? } - } + TMap = λ i → C [ hom ( FObj Γ i ) o FMap F ( TMap (NIA Γ a t) i ) ] + ; isNTrans = record { commute = λ {x y f} → comm1 x y f } + } where + comm1 : (x y : Obj I) (f : Hom I x y ) → + C [ C [ FMap (G ○ FIA Γ) f o C [ hom (FObj Γ x) o FMap F (TMap (NIA Γ a t) x) ] ] + ≈ C [ C [ hom (FObj Γ y) o FMap F (TMap (NIA Γ a t) y) ] o FMap (K C I (FObj F (obj a))) f ] ] + comm1 x y f = let open ≈-Reasoning (C) in begin + FMap (G ○ FIA Γ) f o ( hom (FObj Γ x) o FMap F (TMap (NIA Γ a t) x )) + ≈⟨⟩ + FMap G (FMap (FIA Γ) f) o ( hom (FObj Γ x) o FMap F (TMap (NIA Γ a t) x )) + ≈⟨ assoc ⟩ + (FMap G (FMap (FIA Γ) f) o ( hom (FObj Γ x))) o FMap F (TMap (NIA Γ a t) x ) + ≈⟨ car ( comm (FMap Γ f) ) ⟩ + ( hom (FObj Γ y) o FMap F (FMap (FIA Γ) f )) o FMap F (TMap (NIA Γ a t) x ) + ≈↑⟨ assoc ⟩ + hom (FObj Γ y) o ( FMap F (FMap (FIA Γ) f ) o FMap F (TMap (NIA Γ a t) x )) + ≈↑⟨ cdr (distr F) ⟩ + hom (FObj Γ y) o ( FMap F ( A [ FMap (FIA Γ) f o TMap (NIA Γ a t) x ]) ) + ≈⟨ cdr ( fcong F ( IsNTrans.commute ( isNTrans ( NIA Γ a t )))) ⟩ + hom (FObj Γ y) o ( FMap F ( A [ TMap (NIA Γ a t) y o id1 A (obj a) ]) ) + ≈⟨ cdr ( fcong F ( IsCategory.identityR (Category.isCategory A))) ⟩ + hom (FObj Γ y) o FMap F (TMap (NIA Γ a t) y) + ≈↑⟨ idR ⟩ + ( hom (FObj Γ y) o FMap F (TMap (NIA Γ a t) y) ) o FMap (K C I (FObj F (obj a))) f + ∎ + comma-a0 : { I : Category c₁ c₂ ℓ } → ( comp : Complete A I) → ( Γ : Functor I CommaCategory ) → ( glimit : LimitPreserve A I C G ) (a : CommaObj) → ( t : NTrans I CommaCategory (K CommaCategory I a) Γ ) → Hom CommaCategory a (commaLimit comp Γ glimit) @@ -187,7 +210,7 @@ comm1 = let open ≈-Reasoning (C) in begin FMap G (limit (isLimit (climit comp (FIA Γ))) (obj a) (NIA Γ a t)) o hom a ≈⟨ {!!} ⟩ - limit (isLimit (LimitC comp Γ glimit )) (FObj F (obj a)) {!!} + limit (isLimit (LimitC comp Γ glimit )) (FObj F (obj a)) (gnat comp Γ glimit a t ) ≈⟨ limit-uniqueness (isLimit (LimitC comp Γ glimit )) (limit (isLimit (LimitC comp Γ glimit )) (FObj F ( limit-c comp (FIA Γ))) (tu comp Γ ) o FMap F (limit (isLimit (climit comp (FIA Γ))) (obj a) (NIA Γ a t)) @@ -211,7 +234,7 @@ hom ( FObj Γ i ) o FMap F ( A [ TMap (t0 ( climit comp (FIA Γ))) i o limit (isLimit (climit comp (FIA Γ))) (obj a) (NIA Γ a t) ] ) ≈⟨ cdr ( fcong F ( t0f=t (isLimit (climit comp (FIA Γ))))) ⟩ - hom ( FObj Γ i ) o FMap F ( TMap {!!} i ) + hom ( FObj Γ i ) o FMap F ( TMap (NIA Γ a t) i ) ≈⟨ {!!} ⟩ TMap {!!} i ∎