Mercurial > hg > Members > kono > Proof > category
changeset 666:ba84fbc64c7d
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 23 Oct 2017 15:21:20 +0900 |
parents | 9904edf40547 |
children | 60e881060534 |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 11 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Mon Oct 23 07:52:30 2017 +0900 +++ b/SetsCompleteness.agda Mon Oct 23 15:21:20 2017 +0900 @@ -8,7 +8,7 @@ open import Relation.Binary.Core open import Function import Relation.Binary.PropositionalEquality --- Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g → ( λ x → f x ≡ λ x → g x ) +-- Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → ( λ x → f x ≡ λ x → g x ) postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionality c₂ c₂ ≡cong = Relation.Binary.PropositionalEquality.cong @@ -251,7 +251,7 @@ limit1 a t x ≡⟨⟩ record { snmap = λ i → ( TMap t i ) x ; sncommute = λ i j f → comm2 t f } - ≡⟨ snat-cong (limit1 a t x) (f x ) ( extensionality Sets ( λ i → eq1 x i )) (eq5 x ) ⟩ + ≡⟨ snat-cong (limit1 a t x) (f x ) ( extensionality Sets ( λ i → eq1 x i )) (eq5 x ( extensionality Sets ( λ i → eq1 x i ) )) ⟩ record { snmap = λ i → snmap (f x ) i ; sncommute = λ i j g → sncommute (f x ) i j g } ≡⟨⟩ f x @@ -264,13 +264,18 @@ eq2 x i j f = ≡cong ( λ f → f x ) ( IsNTrans.commute ( isNTrans t ) ) eq3 : (x : a ) (i j : Obj C) (k : I) → ΓMap s Γ k (snmap (f x) i) ≡ snmap (f x) j eq3 x i j k = sncommute (f x ) i j k + eq3' : (x : a ) (i j : Obj C) (k : I) → + ( ΓMap s Γ k (TMap t i x) ≡ TMap t j x ) ≡ ( ΓMap s Γ k (snmap (f x) i) ≡ snmap (f x) j ) + eq3' x i j k = ≡cong ( λ h → ( ΓMap s Γ k (h i) ≡ h j )) ( extensionality Sets ( λ i → eq1 x i ) ) irr≅ : { c₂ : Level} {d : Set c₂ } { x y : d } ( eq eq' : x ≡ y ) → eq ≅ eq' irr≅ refl refl = refl eq4 : ( x : a) ( i j : Obj C ) ( g : I ) → TMap t i x ≡ snmap (f x) i → ≡cong ( λ h → h x ) ( IsNTrans.commute ( isNTrans t ) {i} {j} {hom← s g } ) ≅ sncommute (f x) i j g eq4 x i j g eq = {!!} -- irr≅ ? ? - -- eq2 : ( x : a) → sncommute (limit1 a t x) ≅ sncommute (f x) - eq5 : ( x : a) → ( λ i j g → ≡cong ( λ h → h x ) ( IsNTrans.commute ( isNTrans t ) {i} {j} {hom← s g } )) - ≅ ( λ i j g → sncommute (f x) i j g ) - eq5 x = {!!} + postulate eq6 : {a : Level } {A : Set a} {B : A → Set a} {f g : (y : A) → B y} → (∀ y → f y ≡ g y) → ( ( λ y → f y ) ≅ ( λ y → g y )) + -- eq5 : ( x : a) → sncommute (limit1 a t x) ≅ sncommute (f x) + eq5 : ( x : a) → ( ( λ i → TMap t i x ) ≡ snmap (f x) ) + → ( λ i j g → ≡cong ( λ h → h x ) ( IsNTrans.commute ( isNTrans t ) {i} {j} {hom← s g } )) + ≅ ( λ i j g → sncommute (f x) i j g ) + eq5 x eq = {!!}