Mercurial > hg > Members > kono > Proof > category
changeset 714:bc21e89cd273
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 23 Nov 2017 20:18:09 +0900 |
parents | 5e101ee6dab9 |
children | 1be42267eeee |
files | monoidal.agda |
diffstat | 1 files changed, 43 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/monoidal.agda Thu Nov 23 18:24:44 2017 +0900 +++ b/monoidal.agda Thu Nov 23 20:18:09 2017 +0900 @@ -370,6 +370,13 @@ law3 : {a : Obj Sets } { x : FObj F a } → FMap F (Iso.≅→ (mρ-iso isM)) (φ (x , unit)) ≡ x law4 : {a : Obj Sets } { x : FObj F a } → FMap F (Iso.≅→ (mλ-iso isM)) (φ (unit , x)) ≡ x +-- http://www.staff.city.ac.uk/~ross/papers/Applicative.pdf +-- naturality of φ fmap(f × g)(φ u v) = φ ( fmap f u) ( fmap g v ) +-- left identity fmap snd (φ unit v) = v +-- right identity fmap fst (φ u unit) = u +-- associativity fmap assoc (φ u (φ v w)) = φ (φ u v) w + + record HaskellMonoidalFunctor {c₁ : Level} ( f : Functor (Sets {c₁}) (Sets {c₁}) ) : Set (suc (suc c₁)) where field @@ -480,6 +487,7 @@ _・_ : { a b c : Obj (Sets {c₁} ) } → (b → c) → (a → b) → a → c _・_ f g = λ x → f ( g x ) field + -- http://www.staff.city.ac.uk/~ross/papers/Applicative.pdf identity : { a : Obj Sets } { u : FObj f a } → pure ( id1 Sets a ) <*> u ≡ u composition : { a b c : Obj Sets } { u : FObj f ( b → c ) } { v : FObj f (a → b ) } { w : FObj f a } → (( pure _・_ <*> u ) <*> v ) <*> w ≡ u <*> (v <*> w) @@ -525,6 +533,8 @@ ; interchange = interchange } where + id : { a : Obj Sets } → a → a + id x = x isM : IsMonoidal (Sets {c₁}) One SetsTensorProduct isM = Monoidal.isMonoidal MonoidalSets open IsMonoidal @@ -536,16 +546,16 @@ _・_ f g = λ x → f ( g x ) identity : { a : Obj Sets } { u : FObj F a } → pure ( id1 Sets a ) <*> u ≡ u identity {a} {u} = begin - pure ( id1 Sets a ) <*> u + pure id <*> u ≡⟨⟩ - ( FMap F ( λ a→b*b → ( proj₁ a→b*b ) ( proj₂ a→b*b )) ) ( φ ( FMap F ( λ y → id1 Sets a ) unit , u ) ) - ≡⟨ sym ( ≡-cong ( λ k → ( FMap F ( λ a→b*b → ( proj₁ a→b*b ) ( proj₂ a→b*b )) ) ( φ ( FMap F ( λ y → id1 Sets a ) unit , k u ))) + ( FMap F ( λ a→b*b → ( proj₁ a→b*b ) ( proj₂ a→b*b )) ) ( φ ( FMap F ( λ y → id ) unit , u ) ) + ≡⟨ sym ( ≡-cong ( λ k → ( FMap F ( λ a→b*b → ( proj₁ a→b*b ) ( proj₂ a→b*b )) ) ( φ ( FMap F ( λ y → id ) unit , k u ))) ( IsFunctor.identity ( Functor.isFunctor F ) ) ) ⟩ - ( FMap F ( λ a→b*b → ( proj₁ a→b*b ) ( proj₂ a→b*b )) ) ( φ ( FMap F ( λ y → id1 Sets a ) unit , FMap F (id1 Sets a) u ) ) + ( FMap F ( λ a→b*b → ( proj₁ a→b*b ) ( proj₂ a→b*b )) ) ( φ ( FMap F ( λ y → id ) unit , FMap F id u ) ) ≡⟨ sym ( ≡-cong ( λ k → ( FMap F ( λ a→b*b → ( proj₁ a→b*b ) ( proj₂ a→b*b )) ) k ) ( IsHaskellMonoidalFunctor.law1 mono ) ) ⟩ - FMap F (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) (FMap F (map (λ y → id1 Sets a) (λ x → x )) (φ (unit , u ))) + FMap F (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) (FMap F (map (λ y → id) id) (φ (unit , u ))) ≡⟨ ≡-cong ( λ k → k (φ (unit , u ) )) ( sym ( IsFunctor.distr ( Functor.isFunctor F ) ) ) ⟩ - FMap F (λ x → (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) ((map (λ y → id1 Sets a) (λ x → x )) x )) (φ (unit , u ) ) + FMap F (λ x → (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) ((map (λ y → id) id) x )) (φ (unit , u ) ) ≡⟨⟩ FMap F (λ x → proj₂ x ) (φ (unit , u ) ) ≡⟨⟩ @@ -558,9 +568,33 @@ composition : { a b c : Obj Sets } { u : FObj F ( b → c ) } { v : FObj F (a → b ) } { w : FObj F a } → (( pure _・_ <*> u ) <*> v ) <*> w ≡ u <*> (v <*> w) composition {a} {b} {c} {u} {v} {w} = begin - ? - ≡⟨ ? ⟩ - ? + FMap F (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) (φ (FMap F (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) (φ + (FMap F (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) (φ (FMap F (λ y f g x → f (g x)) unit , u)) , v)) , w)) + ≡⟨ {!!} ⟩ + FMap F (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) (φ (FMap F (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) (φ + (FMap F (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) (φ (FMap F (λ y f g x → f (g x)) unit , FMap F id u)) , FMap F id v)) , FMap F id w)) + ≡⟨ {!!} ⟩ + FMap F (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) (φ (FMap F (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) (φ + (FMap F (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) (FMap F (map (λ y f g x → f (g x)) id ) (φ ( unit , u))) , FMap F id v)) , FMap F id w)) + ≡⟨ {!!} ⟩ + FMap F (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) (φ (FMap F (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) (φ + (FMap F ( λ x → (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) ((map (λ y f g x → f (g x)) id ) x)) (φ ( unit , u)) , FMap F id v)) , FMap F id w)) + ≡⟨⟩ + FMap F (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) (φ (FMap F (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) (φ + (FMap F ( λ y → (λ f g x → f (g x)) (proj₂ y ) ) (φ ( unit , u)) , FMap F id v)) , FMap F id w)) + ≡⟨ {!!} ⟩ + FMap F (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) (φ (FMap F (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) ( + FMap F ( map ( λ y → (λ f g x → f (g x)) (proj₂ y ) ) id ) ( φ ( φ ( unit , u) , v))) , FMap F id w)) + ≡⟨ {!!} ⟩ + FMap F (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) (φ ( + FMap F ( λ x → (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) (( map ( λ y → (λ f g x → f (g x)) (proj₂ y ) ) id ) x)) ( φ ( φ ( unit , u) , v)) + , FMap F id w)) + ≡⟨⟩ + FMap F (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) (φ ( + FMap F ( λ z → ((( λ f g x → f (g x)) (proj₂ (proj₁ z))) ( proj₂ z ))) ( φ ( φ ( unit , u) , v)) + , FMap F id w)) + ≡⟨ {!!} ⟩ + FMap F (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) (φ (u , FMap F (λ a→b*b → proj₁ a→b*b (proj₂ a→b*b)) (φ (v , w)))) ∎ where open Relation.Binary.PropositionalEquality.≡-Reasoning