Mercurial > hg > Members > kono > Proof > category
changeset 249:bdeed843f8b1
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 09 Sep 2013 14:03:44 +0900 |
parents | efa2fd0e91ee |
children | a1e2228c2a6b |
files | equalizer.agda |
diffstat | 1 files changed, 12 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/equalizer.agda Mon Sep 09 12:55:36 2013 +0900 +++ b/equalizer.agda Mon Sep 09 14:03:44 2013 +0900 @@ -81,7 +81,7 @@ -- -- --- An isomorphic element c' of c makes another equalizer +-- An isomorphic arrow c' to c makes another equalizer -- -- e eqa f g f -- c ----------> a ------->b @@ -224,7 +224,6 @@ -- -- An equalizer satisfies Burroni equations -- --- congs are not yet done ---- lemma-equ1 : {a b c : Obj A} (f g : Hom A a b) → (e : Hom A c a ) → @@ -234,7 +233,7 @@ α = λ {a} {b} {c} f g e → equalizer (eqa {a} {b} {c} f g {e} ) ; -- Hom A c a γ = λ {a} {b} {c} {d} f g h → k (eqa f g ) {d} ( A [ h o (equalizer ( eqa (A [ f o h ] ) (A [ g o h ] ))) ] ) (lemma-equ4 {a} {b} {c} {d} f g h ) ; -- Hom A c d - δ = λ {a} {b} {c} e f → k (eqa {a} {b} {c} f f {e} ) (id1 A a) (lemma-equ2 f); -- Hom A a c + δ = λ {a} {b} {c} e f → k (eqa {a} {b} {c} f f {e} ) (id1 A a) (f1=f1 f); -- Hom A a c cong-α = λ {a b c e f g g'} eq → cong-α1 {a} {b} {c} {e} {f} {g} {g'} eq ; cong-γ = λ {a} {_} {c} {d} {f} {g} {h} {h'} eq → cong-γ1 {a} {c} {d} {f} {g} {h} {h'} eq ; cong-δ = λ {a b c e f f'} f=f' → cong-δ1 {a} {b} {c} {e} {f} {f'} f=f' ; @@ -255,12 +254,10 @@ -- -- e o id1 ≈ e → k e ≈ id - lemma-equ2 : {a b : Obj A} (f : Hom A a b) → A [ A [ f o id1 A a ] ≈ A [ f o id1 A a ] ] - lemma-equ2 f = let open ≈-Reasoning (A) in refl-hom - lemma-b3 : {a b d : Obj A} (f : Hom A a b ) { h : Hom A d a } → A [ A [ equalizer (eqa f f ) o k (eqa f f) (id1 A a) (lemma-equ2 f) ] ≈ id1 A a ] + lemma-b3 : {a b d : Obj A} (f : Hom A a b ) { h : Hom A d a } → A [ A [ equalizer (eqa f f ) o k (eqa f f) (id1 A a) (f1=f1 f) ] ≈ id1 A a ] lemma-b3 {a} {b} {d} f {h} = let open ≈-Reasoning (A) in begin - equalizer (eqa f f) o k (eqa f f) (id1 A a) (lemma-equ2 f) + equalizer (eqa f f) o k (eqa f f) (id1 A a) (f1=f1 f) ≈⟨ ek=h (eqa f f ) ⟩ id1 A a ∎ @@ -293,17 +290,17 @@ ∎ )⟩ k (eqa f g ) {d} ( A [ h' o (equalizer ( eqa (A [ f o h' ] ) (A [ g o h' ] ))) ] ) (lemma-equ4 {a} {b} {c} {d} f g h' ) ∎ - cong-δ1 : {a b c : Obj A} {e : Hom A c a } {f f' : Hom A a b} → A [ f ≈ f' ] → A [ k (eqa {a} {b} {c} f f {e} ) (id1 A a) (lemma-equ2 f) ≈ - k (eqa {a} {b} {c} f' f' {e} ) (id1 A a) (lemma-equ2 f') ] + cong-δ1 : {a b c : Obj A} {e : Hom A c a } {f f' : Hom A a b} → A [ f ≈ f' ] → A [ k (eqa {a} {b} {c} f f {e} ) (id1 A a) (f1=f1 f) ≈ + k (eqa {a} {b} {c} f' f' {e} ) (id1 A a) (f1=f1 f') ] cong-δ1 {a} {b} {c} {e} {f} {f'} f=f' = let open ≈-Reasoning (A) in begin - k (eqa {a} {b} {c} f f {e} ) (id1 A a) (lemma-equ2 f) + k (eqa {a} {b} {c} f f {e} ) (id1 A a) (f1=f1 f) ≈⟨ uniqueness (eqa f f) ( begin - e o k (eqa {a} {b} {c} f' f' {e} ) (id1 A a) (lemma-equ2 f') + e o k (eqa {a} {b} {c} f' f' {e} ) (id1 A a) (f1=f1 f') ≈⟨ ek=h (eqa {a} {b} {c} f' f' {e} ) ⟩ id1 A a ∎ )⟩ - k (eqa {a} {b} {c} f' f' {e} ) (id1 A a) (lemma-equ2 f') + k (eqa {a} {b} {c} f' f' {e} ) (id1 A a) (f1=f1 f') ∎ lemma-b2 : {d : Obj A} {h : Hom A d a} → A [ @@ -320,13 +317,13 @@ A [ k (eqa f g) (A [ A [ equalizer (eqa f g) o j ] o equalizer (eqa (A [ f o A [ equalizer (eqa f g {e}) o j ] ]) (A [ g o A [ equalizer (eqa f g {e} ) o j ] ])) ]) (lemma-equ4 {a} {b} {c} f g (A [ equalizer (eqa f g) o j ])) o - k (eqa (A [ f o A [ equalizer (eqa f g) o j ] ]) (A [ f o A [ equalizer (eqa f g) o j ] ])) (id1 A d) (lemma-equ2 (A [ f o A [ equalizer (eqa f g) o j ] ])) ] + k (eqa (A [ f o A [ equalizer (eqa f g) o j ] ]) (A [ f o A [ equalizer (eqa f g) o j ] ])) (id1 A d) (f1=f1 (A [ f o A [ equalizer (eqa f g) o j ] ])) ] ≈ j ] lemma-b4 {d} {j} = let open ≈-Reasoning (A) in begin ( k (eqa f g) (( ( equalizer (eqa f g) o j ) o equalizer (eqa (( f o ( equalizer (eqa f g {e}) o j ) )) (( g o ( equalizer (eqa f g {e}) o j ) ))) )) (lemma-equ4 {a} {b} {c} f g (( equalizer (eqa f g) o j ))) o - k (eqa (( f o ( equalizer (eqa f g) o j ) )) (( f o ( equalizer (eqa f g) o j ) ))) (id1 A d) (lemma-equ2 (( f o ( equalizer (eqa f g) o j ) ))) ) + k (eqa (( f o ( equalizer (eqa f g) o j ) )) (( f o ( equalizer (eqa f g) o j ) ))) (id1 A d) (f1=f1 (( f o ( equalizer (eqa f g) o j ) ))) ) ≈⟨ car ((uniqueness (eqa f g) ( begin equalizer (eqa f g) o j ≈↑⟨ idR ⟩ @@ -334,7 +331,7 @@ ≈⟨⟩ -- here we decide e (fej) (gej)' is id1 A d ((equalizer (eqa f g) o j) o equalizer (eqa (f o equalizer (eqa f g {e}) o j) (g o equalizer (eqa f g {e}) o j))) ∎ ))) ⟩ - j o k (eqa (( f o ( equalizer (eqa f g) o j ) )) (( f o ( equalizer (eqa f g) o j ) ))) (id1 A d) (lemma-equ2 (( f o ( equalizer (eqa f g) o j ) ))) + j o k (eqa (( f o ( equalizer (eqa f g) o j ) )) (( f o ( equalizer (eqa f g) o j ) ))) (id1 A d) (f1=f1 (( f o ( equalizer (eqa f g) o j ) ))) ≈⟨ cdr ((uniqueness (eqa (( f o ( equalizer (eqa f g) o j ) )) (( f o ( equalizer (eqa f g) o j ) ))) ( begin equalizer (eqa (f o equalizer (eqa f g {e} ) o j) (f o equalizer (eqa f g {e}) o j)) o id1 A d ≈⟨ idR ⟩