Mercurial > hg > Members > kono > Proof > category
changeset 234:c02287d3d2dc
equalizer iso done.
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 08 Sep 2013 03:56:45 +0900 |
parents | 4bba19bc71be |
children | 8835015a3e1a |
files | equalizer.agda |
diffstat | 1 files changed, 75 insertions(+), 40 deletions(-) [+] |
line wrap: on
line diff
--- a/equalizer.agda Sun Sep 08 01:37:24 2013 +0900 +++ b/equalizer.agda Sun Sep 08 03:56:45 2013 +0900 @@ -85,56 +85,58 @@ -- v| -- c' -equalizer+iso : {a b c c' : Obj A } {f g : Hom A a b } {e : Hom A c a } { e' : Hom A c' a } - ( fe=ge' : A [ A [ f o e' ] ≈ A [ g o e' ] ] ) - ( eqa : Equalizer A e f g ) → (h-1 : Hom A c' c ) → (h : Hom A c c' ) → - A [ A [ e o h-1 ] ≈ e' ] → A [ A [ e' o h ] ≈ e ] - → Equalizer A e' f g -equalizer+iso {a} {b} {c} {c'} {f} {g} {e} {e'} fe=ge' eqa h-1 h e→e' e'→e = record { +equalizer+iso : {a b c c' : Obj A } {f g : Hom A a b } {e : Hom A c a } + (h-1 : Hom A c' c ) → (h : Hom A c c' ) → + A [ A [ h o h-1 ] ≈ id1 A c' ] → A [ A [ h-1 o h ] ≈ id1 A c ] → + ( fe=ge' : A [ A [ f o A [ e o h-1 ] ] ≈ A [ g o A [ e o h-1 ] ] ] ) + ( eqa : Equalizer A e f g ) + → Equalizer A (A [ e o h-1 ] ) f g +equalizer+iso {a} {b} {c} {c'} {f} {g} {e} h-1 h hh-1=1 h-1h=1 fe=ge' eqa = record { fe=ge = fe=ge1 ; k = λ j eq → A [ h o k eqa j eq ] ; ek=h = ek=h1 ; uniqueness = uniqueness1 } where - fe=ge1 : A [ A [ f o e' ] ≈ A [ g o e' ] ] - fe=ge1 = let open ≈-Reasoning (A) in - begin - f o e' - ≈↑⟨ cdr e→e' ⟩ - f o ( e o h-1 ) - ≈⟨ assoc ⟩ - (f o e ) o h-1 - ≈⟨ car (fe=ge eqa) ⟩ - (g o e ) o h-1 - ≈↑⟨ assoc ⟩ - g o ( e o h-1 ) - ≈⟨ cdr e→e' ⟩ - g o e' - ∎ + fe=ge1 : A [ A [ f o A [ e o h-1 ] ] ≈ A [ g o A [ e o h-1 ] ] ] + fe=ge1 = fe=ge' ek=h1 : {d : Obj A} {j : Hom A d a} {eq : A [ A [ f o j ] ≈ A [ g o j ] ]} → - A [ A [ e' o A [ h o k eqa j eq ] ] ≈ j ] + A [ A [ A [ e o h-1 ] o A [ h o k eqa j eq ] ] ≈ j ] ek=h1 {d} {j} {eq} = let open ≈-Reasoning (A) in begin - e' o ( h o k eqa j eq ) - ≈⟨ assoc ⟩ - ( e' o h) o k eqa j eq - ≈⟨ car e'→e ⟩ - e o k eqa j eq + ( e o h-1 ) o ( h o k eqa j eq ) + ≈↑⟨ assoc ⟩ + e o ( h-1 o ( h o k eqa j eq ) ) + ≈⟨ cdr assoc ⟩ + e o (( h-1 o h) o k eqa j eq ) + ≈⟨ cdr (car h-1h=1 ) ⟩ + e o (id1 A c o k eqa j eq ) + ≈⟨ cdr idL ⟩ + e o k eqa j eq ≈⟨ ek=h eqa ⟩ j ∎ uniqueness1 : {d : Obj A} {h' : Hom A d a} {eq : A [ A [ f o h' ] ≈ A [ g o h' ] ]} {j : Hom A d c'} → - A [ A [ e' o j ] ≈ h' ] → + A [ A [ A [ e o h-1 ] o j ] ≈ h' ] → A [ A [ h o k eqa h' eq ] ≈ j ] uniqueness1 {d} {h'} {eq} {j} ej=h = let open ≈-Reasoning (A) in begin h o k eqa h' eq - ≈⟨ {!!} ⟩ + ≈⟨ cdr (uniqueness eqa ( begin + e o ( h-1 o j ) + ≈⟨ assoc ⟩ + (e o h-1 ) o j + ≈⟨ ej=h ⟩ + h' + ∎ )) ⟩ + h o ( h-1 o j ) + ≈⟨ assoc ⟩ + (h o h-1 ) o j + ≈⟨ car hh-1=1 ⟩ + id1 A c' o j + ≈⟨ idL ⟩ j ∎ - - -- -- If we have two equalizers on c and c', there are isomorphic pair h, h' -- @@ -145,17 +147,16 @@ c-iso-l : { c c' a b : Obj A } {f g : Hom A a b } → {e : Hom A c a } { e' : Hom A c' a } ( eqa : Equalizer A e f g) → ( eqa' : Equalizer A e' f g ) - → ( keqa : Equalizer A (k eqa' e {!!} ) (A [ f o e' ]) (A [ g o e' ]) ) + → ( keqa : Equalizer A (k eqa' e (fe=ge eqa)) (A [ f o e' ]) (A [ g o e' ]) ) → Hom A c c' -c-iso-l {c} {c'} eqa eqa' eff = {!!} +c-iso-l {c} {c'} eqa eqa' keqa = equalizer keqa c-iso-r : { c c' a b : Obj A } {f g : Hom A a b } {e : Hom A c a } {e' : Hom A c' a} → ( eqa : Equalizer A e f g) → ( eqa' : Equalizer A e' f g ) - → ( keqa : Equalizer A (k eqa' e {!!} ) (A [ f o e' ]) (A [ g o e' ]) ) + → ( keqa : Equalizer A (k eqa' e (fe=ge eqa)) (A [ f o e' ]) (A [ g o e' ]) ) → Hom A c' c c-iso-r {c} {c'} eqa eqa' keqa = k keqa (id1 A c') ( f1=g1 (fe=ge eqa') (id1 A c') ) - - -- e(eqa') f + -- e' f -- c'----------> a ------->b f e j = g e j -- ^ g -- |k h @@ -167,15 +168,49 @@ -- h = j e f -> j = j' -- -c-iso : { c c' a b : Obj A } {f g : Hom A a b } → {e : Hom A c a } {e' : Hom A c' a} ( eqa : Equalizer A e f g) → ( eqa' : Equalizer A e' f g ) - → ( keqa : Equalizer A (k eqa' e {!!} ) (A [ f o e' ]) (A [ g o e' ]) ) +c-iso→ : { c c' a b : Obj A } {f g : Hom A a b } → {e : Hom A c a } {e' : Hom A c' a} ( eqa : Equalizer A e f g) → ( eqa' : Equalizer A e' f g ) + → ( keqa : Equalizer A (k eqa' e (fe=ge eqa)) (A [ f o e' ]) (A [ g o e' ]) ) → A [ A [ c-iso-l eqa eqa' keqa o c-iso-r eqa eqa' keqa ] ≈ id1 A c' ] -c-iso {c} {c'} {a} {b} {f} {g} eqa eqa' keqa = let open ≈-Reasoning (A) in begin +c-iso→ {c} {c'} {a} {b} {f} {g} eqa eqa' keqa = let open ≈-Reasoning (A) in begin c-iso-l eqa eqa' keqa o c-iso-r eqa eqa' keqa - ≈⟨ {!!} ⟩ + ≈⟨⟩ + equalizer keqa o k keqa (id1 A c') ( f1=g1 (fe=ge eqa') (id1 A c') ) + ≈⟨ ek=h keqa ⟩ id1 A c' ∎ +c-iso← : { c c' a b : Obj A } {f g : Hom A a b } → {e : Hom A c a } {e' : Hom A c' a} ( eqa : Equalizer A e f g) → ( eqa' : Equalizer A e' f g ) + → ( keqa : Equalizer A (k eqa' e (fe=ge eqa )) (A [ f o e' ]) (A [ g o e' ]) ) + → ( keqa' : Equalizer A (k keqa (id1 A c') ( f1=g1 (fe=ge eqa') (id1 A c') )) (A [ f o e ]) (A [ g o e ]) ) + → { e'->e : A [ e' ≈ A [ e o equalizer keqa' ] ] } + → A [ A [ c-iso-r eqa eqa' keqa o c-iso-l eqa eqa' keqa ] ≈ id1 A c ] +c-iso← {c} {c'} {a} {b} {f} {g} {e} {e'} eqa eqa' keqa keqa' {e'->e} = let open ≈-Reasoning (A) in begin + c-iso-r eqa eqa' keqa o c-iso-l eqa eqa' keqa + ≈⟨⟩ + k keqa (id1 A c') ( f1=g1 (fe=ge eqa') (id1 A c') ) o k eqa' e (fe=ge eqa ) + ≈⟨⟩ + equalizer keqa' o k eqa' e (fe=ge eqa ) + ≈⟨ cdr ( begin + k eqa' e (fe=ge eqa ) + ≈⟨ uniqueness eqa' ( begin + e' o k keqa' (id1 A c) (f1=g1 (fe=ge eqa) (id1 A c)) + ≈⟨ car e'->e ⟩ + ( e o equalizer keqa' ) o k keqa' (id1 A c) (f1=g1 (fe=ge eqa) (id1 A c)) + ≈↑⟨ assoc ⟩ + e o ( equalizer keqa' o k keqa' (id1 A c) (f1=g1 (fe=ge eqa) (id1 A c))) + ≈⟨ cdr ( ek=h keqa' ) ⟩ + e o id1 A c + ≈⟨ idR ⟩ + e + ∎ )⟩ + k keqa' (id1 A c) ( f1=g1 (fe=ge eqa) (id1 A c) ) + ∎ )⟩ + equalizer keqa' o k keqa' (id1 A c) ( f1=g1 (fe=ge eqa) (id1 A c) ) + ≈⟨ ek=h keqa' ⟩ + id1 A c + ∎ + + ---- --