Mercurial > hg > Members > kono > Proof > category
changeset 507:c1c12e5a82ad
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 17 Mar 2017 19:55:51 +0900 |
parents | 817093714fd5 |
children | 3ce21b2a671a |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 49 insertions(+), 25 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Fri Mar 17 11:53:53 2017 +0900 +++ b/SetsCompleteness.agda Fri Mar 17 19:55:51 2017 +0900 @@ -54,36 +54,60 @@ open Functor open NTrans -record Slimit { c₂ } (I : Set c₂ ) ( ΓObj : I → Set c₂ ) - ( ΓMap : ( f : I → I ) → Set c₂ → Set c₂ ) : Set c₂ where - field - sobj : I - bb : ΓObj sobj - cc : I → I - ec : ΓMap cc I - dc : ΓObj sobj → I +record ΓObj { c₂ } (x : Set c₂ ) : Set c₂ where + field + obj : x + +open ΓObj + +record ΓMap { c₂ } {a b : Set c₂ } ( f : a → b ) : Set c₂ where + field + map : ΓObj a → ΓObj b + +open ΓMap + + +record Slimit { c₂ } ( sobj : Set c₂ → Set c₂ ) (smap : {a b : Set c₂ } ( f : a → b ) → Set c₂ ) + : Set c₂ where +-- field +-- aap : ΓObj slim +-- ap : ΓObj slim → ΓObj slim +-- hoge : sobj slim +-- hoge1 : smap {slim} {slim} ( λ x → x ) + +record ΓTMap { c₂ } (a : Set c₂ ) : Set c₂ where + field + tmap : a → Slimit ΓObj ΓMap → ΓObj a + +open ΓTMap + + +-- sobj : S +-- smap : fobj S +-- hoge : ΓObj S + +-- bb : ΓObj I +-- cc : I → I open Slimit -SetsLimit : { c₂ : Level} - ( I : Set c₂ ) ( ΓObj' : I → Set c₂ )( ΓMap' : { f : I → I } → Set c₂ → Set c₂ ) - ( ΓObj : Obj Sets → Obj Sets ) ( ΓMap : {A B : Obj Sets} → Hom Sets A B → Hom Sets (ΓObj A) ( ΓObj B )) - ( Γ : IsFunctor (Sets { c₂}) (Sets { c₂}) ΓObj ΓMap ) - → Limit Sets Sets ( record { FObj = ΓObj ; FMap = ΓMap ; isFunctor = Γ } ) -SetsLimit { c₂} I ΓObj' ΓMap' ΓObj ΓMap Γ = record { - a0 = Slimit I ΓObj' ΓMap' - ; t0 = record { TMap = tmap ; isNTrans = record { commute = tcommute } } +tmp : { c₂ : Level} {a b : Set c₂ } → (f : a → b ) → ΓMap f +tmp {a} {b} f = record { map = λ aobj → record { obj = f ( obj aobj ) } } + +ttmp : {c₂ : Level} (A : Set c₂ ) → ΓTMap A +ttmp A = record { tmap = λ a slim → record { obj = a } } + +SetsLimit : { c₂ : Level} (e : Set c₂) ( Γ : IsFunctor (Sets { c₂}) (Sets { c₂}) ΓObj ( λ f → map (tmp f ) )) + → Limit Sets Sets ( record { FObj = ΓObj ; FMap = ( λ f → map (tmp f )) ; isFunctor = Γ } ) +SetsLimit { c₂} e Γ = record { + a0 = Slimit ΓObj ΓMap + ; t0 = record { TMap = λ i → {!!} ; isNTrans = record { commute = {!!} } } ; isLimit = record { limit = {!!} ; t0f=t = {!!} ; limit-uniqueness = {!!} } - } where - tmap : (a : Obj Sets) → Hom Sets (Slimit I {!!} {!!}) (ΓObj a) - tmap a _ = {!!} - tcommute : {a b : Obj Sets} {f : Hom Sets a b} → Sets [ Sets [ ΓMap f o tmap a ] ≈ Sets [ tmap b o id1 Sets (Slimit I {!!} {!!}) ] ] - tcommute {a} {b} {f} = {!!} - - - - + } where + tmap0 : (a : Obj Sets) → Hom Sets (FObj (K Sets Sets ( Slimit ΓObj ΓMap)) a) (ΓObj a) + tmap0 a oa = tmap ( ttmp a ) ? oa +