Mercurial > hg > Members > kono > Proof > category
changeset 550:c2ce1c6a3570
close this
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 06 Apr 2017 03:24:44 +0900 |
parents | adef39d19884 |
children | |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 20 insertions(+), 50 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Thu Apr 06 02:45:42 2017 +0900 +++ b/SetsCompleteness.agda Thu Apr 06 03:24:44 2017 +0900 @@ -234,8 +234,9 @@ ( s t : snat SO SM ) → ( eq1 : ( i : OC ) → snmap s i ≡ snmap t i ) → ( i j : OC ) → ( f : I ) → SM f ( snmap s i ) ≡ snmap s j - → SM f (snmeq s t i (eq1 i)) ≡ snmeq s t j (eq1 j) -scomm2 SO SM s t eq1 i j f eq2 = lemma eq2 (snmeqeqs SO SM s t i eq1) (snmeqeqs SO SM s t j eq1) where + → {x : ( i : OC ) → SO i } → (x ≡ λ i → snmeq s t i (eq1 i ) ) + → SM f (x i) ≡ x j +scomm2 SO SM s t eq1 i j f eq2 refl = lemma eq2 (snmeqeqs SO SM s t i eq1) (snmeqeqs SO SM s t j eq1) where lemma : { si sni : SO i} { sj snj : SO j } → ( SM f si ≡ sj ) → (si ≡ sni ) → (sj ≡ snj ) → ( SM f sni ≡ snj ) lemma eq1 eq2 eq3 = subst2 (λ x → SM f x) (λ y → y ) eq1 eq2 eq3 @@ -249,60 +250,29 @@ lemma eq1 eq2 eq3 = subst2 (λ x → SM f x) (λ y → y ) eq1 eq2 eq3 --- {!!} -- subst ( λ x → SM f x ) ( λ x → x ) ? ? ? - --- irr : { c₂ : Level} {d : Set c₂ } { x y : d } ( eq eq' : x ≡ y ) → eq ≡ eq' --- irr refl refl = refl - --- irr2 : { c₂ : Level} {d : Set c₂ } { x1 x2 y1 y2 : d } ( eqx : x1 ≡ x2 )( eqy : y1 ≡ y2 ) --- ( eq1 : x1 ≡ y1 ) ( eq2 : x2 ≡ y2 ) → eq1 ≡ eq2 --- irr2 = ? - - snat-cong : { c : Level } { I OC : Set c } ( SObj : OC → Set c ) ( SMap : { i j : OC } → (f : I )→ SObj i → SObj j) { s t : snat SObj SMap } → (( i : OC ) → snmap s i ≡ snmap t i ) → ( ( i j : OC ) ( f : I ) → SMap {i} {j} f ( snmap s i ) ≡ snmap s j ) → ( ( i j : OC ) ( f : I ) → SMap {i} {j} f ( snmap t i ) ≡ snmap t j ) → s ≡ t -snat-cong {_} {I} {OC} SO SM {s} {t} eq1 eq2 eq3 = ≡cong2 ( λ x y → - record { snmap = λ i → x i ; sncommute = λ {i} {j} f → y x i j f } ) (extensionality Sets ( λ i → eq1 i )) - ( extensionality Sets ( λ x → - ( extensionality Sets ( λ i → - ( extensionality Sets ( λ j → - ( extensionality Sets ( λ f → snat-irr x i j f - {!!} - {!!} - )))))))) where - smi=pi : ( i j : OC ) (f : I ) - → { sm : ( i : OC ) → SO i } - → { smi : SO i } - → ( sm i ≡ smi ) - → ( eq1 : ( i : OC ) → snmap s i ≡ snmap t i ) - → smi ≡ snmap s i - smi=pi i j f {sm} refl eq1 = {!!} where - lemma : { si ti : SO i } → ( si ≡ ti ) → sm i ≡ si - lemma refl = {!!} - scomm1 : ( i j : OC ) (f : I ) - → ( sm : ( i : OC ) → SO i ) - → { smfi smj : SO j} - → ( sm j ≡ sm j ) - → smfi ≡ smj - → SM f (sm i) ≡ sm j - scomm1 i j f = {!!} - scomm : {sm : ( i : OC ) → SO i } ( i j : OC ) (f : I ) - → ( eq1 : ( i : OC ) → snmap s i ≡ snmap t i ) - → ( eq2 : ( i j : OC ) ( f : I ) → SM {i} {j} f ( snmap s i ) ≡ snmap s j ) - → SM f (sm i) ≡ sm j - scomm {sm} i j f eq1 eq2 = {!!} -- scomm1 i j f sm (eq1 j) ( ≡cong ( λ k → SM f ) ( eq1 i )) (eq2 i j f ) - snat-irr1 : (sm : ( i : OC ) → SO i ) ( i j : OC ) → ( f : I ) → { smfi smj : SO j } → ( es et : smfi ≡ smj ) → es ≡ et - snat-irr1 sm i j f refl refl = refl - snat-irr : (sm : ( i : OC ) → SO i ) ( i j : OC ) → ( f : I ) → ( es et : SM f ( sm i ) ≡ sm j ) → es ≡ et - snat-irr sm i j f es et = snat-irr1 sm i j f es et - - snat-irr' : (sm : ( i : OC ) → SO i ) ( i j : OC ) → ( f : I ) → { snmapsi snmapti : SO i } → snmapsi ≡ snmapti → snmapsi ≡ sm i → ( es et : SM f ( sm i ) ≡ sm j ) → es ≡ et - snat-irr' sm i j f {pi} {.pi} refl eq es et = snat-irr1 sm i j f es et - +snat-cong {_} {I} {OC} SO SM {s} {t} eq1 eq2 eq3 = begin + record { snmap = λ i → snmap s i ; sncommute = λ {i} {j} f → sncommute s f } + ≡⟨ + ≡cong2 ( λ x y → + record { snmap = λ i → x i ; sncommute = λ {i} {j} f → y ? i j f } ) ( extensionality Sets ( λ i → snmeqeqs SO SM s t i eq1 ) ) + ( extensionality Sets ( λ x → + ( extensionality Sets ( λ i → + ( extensionality Sets ( λ j → + ( extensionality Sets ( λ f → scomm2 SO SM s t eq1 i j f (eq2 i j f ) x + )))))))) + ⟩ + record { snmap = λ i → snmeq s t i (eq1 i ) ; sncommute = λ {i} {j} f → snmc s t (eq1 i) (eq1 j) (eq2 i j f ) (eq3 i j f ) } + ≡⟨ {!!} ⟩ + record { snmap = λ i → snmap t i ; sncommute = λ {i} {j} f → sncommute t f } + ∎ where + open import Relation.Binary.PropositionalEquality + open ≡-Reasoning open import HomReasoning open NTrans