Mercurial > hg > Members > kono > Proof > category
changeset 111:c670d0e6b1e2
Category._o_ /= Category.Category.Id
when checking that the expression _∙_ has type
(EMHom .B .C → EMHom .A .B → EMHom .A .C)
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 31 Jul 2013 21:59:02 +0900 |
parents | 1db2b43a1a36 |
children | 5f8d6d1aece4 |
files | em-category.agda |
diffstat | 1 files changed, 18 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/em-category.agda Wed Jul 31 21:34:44 2013 +0900 +++ b/em-category.agda Wed Jul 31 21:59:02 2013 +0900 @@ -83,7 +83,7 @@ (id1 A x) o φ ∎ -EM-id : {x : Obj A} {φ : Hom A (FObj T x) x} {a : EMObj {x} {φ} } -> EMHom a a +EM-id : {x : Obj A} {φ : Hom A (FObj T x) x} {a : EMObj {x} {φ} } -> EMHom {x} {x} {φ} {φ} {id1 A x} a a EM-id {x} {φ} {a} = record { isEMHom = record { homomorphism = Lemma-EM1 {x} {φ} a } } @@ -120,7 +120,7 @@ ( (EMap g) o (EMap f) ) o φ ∎ -_∙_ : {x y z : Obj A} +_*_ : {x y z : Obj A} {φ : Hom A (FObj T x) x} {φ' : Hom A (FObj T y) y} {φ'' : Hom A (FObj T z) z} @@ -129,10 +129,14 @@ {a : EMObj {x} {φ} } {b : EMObj {y} {φ'} } {c : EMObj {z} {φ''} } - (g : EMHom {y} {z} {φ'} {φ''} {α'} b c ) -> + (g : EMHom {y} {z} {φ'} {φ''} {α'} b c ) (f : EMHom {x} {y} {φ} {φ'} {α} a b) -> (EMHom {x} {z} {φ} {φ''} {A [ α' o α ] } a c) -_∙_ {_} {_} {_} {_} {_} {_} {_} {_} {a} {b} {c} g f = record { isEMHom = record { homomorphism = Lemma-EM2 a b c g f } } +_*_ {x} {y} {z} {φ} {φ'} {φ''} {α} {α'} {a} {b} {c} g f = record { isEMHom = record { homomorphism = + Lemma-EM2 {x} {y} {z} {φ} {φ'} {φ''} {α} {α'} a b c g f } } + +_∙_ : {a b c : EMObj } -> EMHom b c -> EMHom a b -> EMHom a c +_∙_ {a} {b} {c} g f = record { isEMHom = record { homomorphism = Lemma-EM2 a b c g f } } _≗_ : {x y : Obj A} {φ : Hom A (FObj T x) x} {φ' : Hom A (FObj T y) y} {α α' : Hom A x y} {a : EMObj {x} {φ} } {b : EMObj {y} {φ'}} @@ -141,7 +145,7 @@ _≗_ {_} {_} {_} {_} {α} {α'} f g = A [ α ≈ α' ] --- isEilenberg-MooreCategory : IsCategory EMObj EMHom _≗_ _∙_ EM-id +isEilenberg-MooreCategory : IsCategory EMObj EMHom _≗_ _∙_ EM-id isEilenberg-MooreCategory = record { isEquivalence = isEquivalence ; identityL = EMidL ; identityR = EMidR @@ -169,15 +173,15 @@ (f ∙ (g ∙ h)) ≗ ((f ∙ g) ∙ h) EMassoc {_} {_} {_} {_} {f} {g} {h} = ( IsCategory.associative (Category.isCategory A) ) --- Eilenberg-MooreCategory : Category (c₁ ⊔ c₂ ⊔ ℓ) (c₁ ⊔ c₂ ⊔ ℓ) ℓ --- Eilenberg-MooreCategory = --- record { Obj = EMObj --- ; Hom = EMHom --- ; _o_ = _∙_ --- ; _≈_ = _≗_ --- ; Id = EM-id --- ; isCategory = isEilenberg-MooreCategory --- } +Eilenberg-MooreCategory : Category (c₁ ⊔ c₂ ⊔ ℓ) (c₁ ⊔ c₂ ⊔ ℓ) ℓ +Eilenberg-MooreCategory = + record { Obj = EMObj + ; Hom = EMHom + ; _o_ = _∙_ + ; _≈_ = _≗_ + ; Id = EM-id + ; isCategory = isEilenberg-MooreCategory + } -- -- -- -- Resolution