Mercurial > hg > Members > kono > Proof > category
changeset 238:c8db99cdf72a
Burrnoi to Equalizer problem written
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 08 Sep 2013 06:31:01 +0900 |
parents | 776cda2286c8 |
children | 08afb6ad80c7 |
files | equalizer.agda |
diffstat | 1 files changed, 33 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/equalizer.agda Sun Sep 08 05:55:56 2013 +0900 +++ b/equalizer.agda Sun Sep 08 06:31:01 2013 +0900 @@ -38,15 +38,15 @@ α : {a b c : Obj A } → (f : Hom A a b) → (g : Hom A a b ) → {e : Hom A c a } → Hom A c a γ : {a b c d : Obj A } → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A d c δ : {a b c : Obj A } → {e : Hom A c a } → (f : Hom A a b) → Hom A a c - b1 : A [ A [ f o α {a} {b} {a} f g {id1 A a} ] ≈ A [ g o α {a} {b} {a} f g {id1 A a} ] ] + b1 : A [ A [ f o α {a} {b} {c} f g {e} ] ≈ A [ g o α {a} {b} {c} f g {e} ] ] b2 : {d : Obj A } → {h : Hom A d a } → A [ A [ ( α {a} {b} {c} f g {e} ) o (γ {a} {b} {c} f g h) ] ≈ A [ h o α (A [ f o h ]) (A [ g o h ]){id1 A d} ] ] b3 : A [ A [ α {a} {b} {a} f f {id1 A a} o δ {a} {b} {a} {id1 A a} f ] ≈ id1 A a ] -- b4 : {c d : Obj A } {k : Hom A c a} → A [ β f g ( A [ α f g o k ] ) ≈ k ] b4 : {d : Obj A } {k : Hom A d c} → A [ A [ γ {a} {b} {c} {d} f g ( A [ α {a} {b} {c} f g {e} o k ] ) o ( δ {d} {b} {d} {id1 A d} (A [ f o A [ α {a} {b} {c} f g {e} o k ] ] ) )] ≈ k ] -- A [ α f g o β f g h ] ≈ h - β : { d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A d c - β {d} {e} {a} {b} f g h = A [ γ {a} {b} {c} f g h o δ {d} {b} {d} {id1 A d} (A [ f o h ]) ] + β : { d a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A d c + β {d} {a} {b} f g h = A [ γ {a} {b} {c} f g h o δ {d} {b} {d} {id1 A d} (A [ f o h ]) ] open Equalizer open Burroni @@ -227,7 +227,7 @@ α = λ {a} {b} {c} f g {e} → equalizer (eqa {a} {b} {c} f g {e} ) ; -- Hom A c a γ = λ {a} {b} {c} {d} f g h → k (eqa f g ) {d} ( A [ h o (equalizer ( eqa (A [ f o h ] ) (A [ g o h ] ))) ] ) (lemma-equ4 {a} {b} {c} {d} f g h ) ; -- Hom A c d δ = λ {a} {b} {c} {e} f → k (eqa {a} {b} {c} f f {e} ) (id1 A a) (lemma-equ2 f); -- Hom A a c - b1 = fe=ge (eqa {a} {b} {a} f g {id1 A a}) ; + b1 = fe=ge (eqa {a} {b} {c} f g {e}) ; b2 = lemma-b2 ; b3 = lemma-b3 ; b4 = lemma-b4 @@ -307,6 +307,35 @@ ∎ +lemma-equ2 : {a b c : Obj A} (f g : Hom A a b) (e : Hom A c a ) + → ( bur : Burroni A {c} {a} {b} f g e ) → Equalizer A {c} {a} {b} (α bur f g) f g +lemma-equ2 {a} {b} {c} f g e bur = record { + fe=ge = fe=ge1 ; + k = k1 ; + ek=h = λ {d} {h} {eq} → ek=h1 {d} {h} {eq} ; + uniqueness = λ {d} {h} {eq} {k'} ek=h → uniqueness1 {d} {h} {eq} {k'} ek=h + } where + k1 : {d : Obj A} (h : Hom A d a) → A [ A [ f o h ] ≈ A [ g o h ] ] → Hom A d c + k1 {d} h fh=gh = β bur {d} {a} {b} f g h + fe=ge1 : A [ A [ f o (α bur f g) ] ≈ A [ g o (α bur f g) ] ] + fe=ge1 = b1 bur + ek=h1 : {d : Obj A} → ∀ {h : Hom A d a} → {eq : A [ A [ f o h ] ≈ A [ g o h ] ] } → A [ A [ (α bur f g) o k1 {d} h eq ] ≈ h ] + ek=h1 {d} {h} {eq} = let open ≈-Reasoning (A) in + begin + α bur f g o k1 h eq + ≈⟨ {!!} ⟩ + h + ∎ + uniqueness1 : {d : Obj A} → ∀ {h : Hom A d a} → {eq : A [ A [ f o h ] ≈ A [ g o h ] ] } → {k' : Hom A d c } → + A [ A [ (α bur f g) o k' ] ≈ h ] → A [ k1 {d} h eq ≈ k' ] + uniqueness1 {d} {h} {eq} {k'} ek=h = let open ≈-Reasoning (A) in + begin + k1 {d} h eq + ≈⟨ {!!} ⟩ + k' + ∎ + + -- end