Mercurial > hg > Members > kono > Proof > category
changeset 580:c9361d23aa3a
to case for equ lemma
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 29 Apr 2017 22:22:20 +0900 |
parents | 36d346a3d6fd |
children | 41ef69cd5871 cd65d5c9a54d |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 24 insertions(+), 24 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Fri Apr 28 19:00:50 2017 +0900 +++ b/SetsCompleteness.agda Sat Apr 29 22:22:20 2017 +0900 @@ -173,6 +173,8 @@ {i j : Obj C } → ( f : I → I ) → ΓObj s Γ i → ΓObj s Γ j ΓMap s Γ {i} {j} f = FMap Γ ( hom← s f ) +slid : { c₁ : Level} { I : Set c₁ } → I → I +slid x = x record slim { c₂ } { I OC : Set c₂ } ( sobj : OC → Set c₂ ) ( smap : { i j : OC } → (f : I → I ) → sobj i → sobj j ) : Set c₂ where @@ -180,34 +182,32 @@ slequ : { i j : OC } → ( f : I → I ) → sequ (sproduct OC sobj ) (sobj j) ( λ x → smap f ( proj x i ) ) ( λ x → proj x j ) ipp : {i j : OC } → (f : I → I ) → sproduct OC sobj ipp {i} {j} f = equ ( slequ {i} {j} f ) - -- - -- slobj : OC → Set c₂ - -- slobj i = sobj i + slobj : OC → Set c₂ + slobj i = sobj i + llr : {i j : OC } → ( f : I → I ) → proj ( equ ( slequ {i} {i} slid )) i ≡ proj ( equ ( slequ {i} {j} f )) i + llr {i} {j} f = ? + lll : {i j : OC } → ( f : I → I ) → proj ( equ ( slequ {i} {j} f )) j ≡ proj ( equ ( slequ {j} {j} slid )) j + lll {i} {j} f = {!!} + ll : {x i j i' j' : OC } → ( f f' : I → I ) → proj ( equ ( slequ {i} {j} f )) x ≡ proj ( equ ( slequ {i'} {j'} f' )) x + ll {x} {i} {j} {i'} {j'} f f' = begin + proj ( equ {_} {sproduct OC sobj } {sobj j} ( slequ {i} {j} f )) x + ≡⟨ {!!} ⟩ + proj ( equ {_} {sproduct OC sobj } {sobj j'} ( slequ {i'} {j'} f' )) x + ∎ where + open import Relation.Binary.PropositionalEquality + open ≡-Reasoning + -- slmap : {i j : OC } → (f : I → I ) → sobj i → sobj j -- slmap f = smap f open slim lemma-equ : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( s : Small C I ) ( Γ : Functor C ( Sets { c₁} )) - {i j i' j' : Obj C } → { f f' : I → I } + {x i j i' j' : Obj C } → { f f' : I → I } → (se : slim (ΓObj s Γ) (ΓMap s Γ) ) - → proj (ipp se {i} {j} f) i ≡ proj (ipp se {i'} {j'} f' ) i -lemma-equ C I s Γ {i} {j} {i'} {j'} {f} {f'} se = ≡cong ( λ p → proj p i ) ( begin - ipp se {i} {j} f - ≡⟨⟩ - record { proj = λ x → proj (equ (slequ se f)) x } - ≡⟨ ≡cong ( λ p → record { proj = proj p i }) ( ≡cong ( λ QIX → record { proj = QIX } ) ( - extensionality Sets ( λ x → ≡cong ( λ qi → qi x ) refl - ) )) ⟩ - record { proj = λ x → proj (equ (slequ se f')) x } - ≡⟨⟩ - ipp se {i'} {j'} f' - ∎ ) where - open import Relation.Binary.PropositionalEquality - open ≡-Reasoning + → proj (ipp se {i} {j} f) x ≡ proj (ipp se {i'} {j'} f' ) x +lemma-equ C I s Γ {x} {i} {j} {i'} {j'} {f} {f'} se = ll se f f' -slid : { c₁ : Level} { I : Set c₁ } → I → I -slid x = x open import HomReasoning open NTrans @@ -227,11 +227,11 @@ FMap Γ f (proj ( ipp se {a} {a} slid ) a) ≡⟨ ≡cong ( λ g → FMap Γ g (proj ( ipp se {a} {a} slid ) a)) (sym ( hom-iso s ) ) ⟩ FMap Γ (hom← s ( hom→ s f)) (proj ( ipp se {a} {a} slid ) a) - ≡⟨ ≡cong ( λ g → FMap Γ (hom← s ( hom→ s f)) g ) ( lemma-equ C I s Γ se ) ⟩ + ≡⟨ ≡cong ( λ g → FMap Γ (hom← s ( hom→ s f)) g ) ( lemma-equ C I s Γ {a} se ) ⟩ FMap Γ (hom← s ( hom→ s f)) (proj ( ipp se {a} {b} (hom→ s f) ) a) ≡⟨ fe=ge0 ( slequ se (hom→ s f ) ) ⟩ proj (ipp se {a} {b} ( hom→ s f )) b - ≡⟨ sym ( lemma-equ C I s Γ se ) ⟩ + ≡⟨ sym ( lemma-equ C I s Γ {b} se ) ⟩ proj (ipp se {b} {b} (λ x → x)) b ≡⟨⟩ (Sets [ (λ se₁ → proj (ipp se₁ (λ x → x)) b) o FMap (K Sets C (slim (ΓObj s Γ) (ΓMap s Γ) )) f ]) se @@ -270,7 +270,7 @@ record { proj = λ i → (Sets [ TMap (Cone C I s Γ) i o f ]) x } ≡⟨⟩ record { proj = λ i → proj (ipp (f x) {i} {i} slid ) i } - ≡⟨ ≡cong ( λ g → record { proj = λ i' → g i' } ) ( extensionality Sets ( λ i'' → lemma-equ C I s Γ (f x))) ⟩ + ≡⟨ ≡cong ( λ g → record { proj = λ i' → g i' } ) ( extensionality Sets ( λ i'' → lemma-equ C I s Γ {i''} (f x))) ⟩ record { proj = λ i → proj (ipp (f x) f') i } ∎ where open import Relation.Binary.PropositionalEquality @@ -289,7 +289,7 @@ elm-cong ( elem ( record { proj = λ i → TMap t i x } ) ( limit2 a t f' x )) (slequ (f x) f' ) (uniquness2 {a} {t} {f} i j cif=t f' x ) ) ))) ) ⟩ - record { slequ = λ {i} {j} f' → slequ (f x ) f' } + record { slequ = λ {i} {j} f' → slequ (f x ) f' } ≡⟨⟩ f x ∎ ) where