Mercurial > hg > Members > kono > Proof > category
changeset 498:c981a2f0642f
UpreseveLimit detailing
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 15 Mar 2017 12:10:24 +0900 |
parents | e8b85a05a6b2 |
children | 511fd37d90ec |
files | freyd2.agda |
diffstat | 1 files changed, 22 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/freyd2.agda Wed Mar 15 11:19:54 2017 +0900 +++ b/freyd2.agda Wed Mar 15 12:10:24 2017 +0900 @@ -33,6 +33,9 @@ open NTrans open Functor +open Limit +open IsLimit +open import Category.Cat HomA : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) (a : Obj A) → Functor A (Sets {c₂}) HomA {c₁} {c₂} {ℓ} A a = record { @@ -79,4 +82,22 @@ UpreseveLimit : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → ( U : Functor A (Sets {c₂}) ) (b : Obj A) { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) ( rep : Representable A U b ) → LimitPreserve A I (Sets {c₂}) U -UpreseveLimit = {!!} +UpreseveLimit {_} { c₂} A U b I rep = record { + preserve = λ Γ limita → record { + limit = λ a t → limitu a Γ t limita + ; t0f=t = λ { a t i } → t0f=tu {a} Γ t limita {i} + ; limit-uniqueness = λ { a t f } t=f → limit-uniquenessu {a} Γ limita t f t=f + } + } where + limitu : ( a : Obj (Sets {c₂}) ) → (Γ : Functor I A ) ( t : NTrans I Sets ( K Sets I a ) (U ○ Γ) ) → ( limita : Limit A I Γ ) → Hom Sets a (FObj U (a0 limita)) + limitu = {!!} + t0f=tu : { a : Obj (Sets {c₂}) } → (Γ : Functor I A ) ( t : NTrans I Sets ( K Sets I a ) (U ○ Γ) ) → ( limita : Limit A I Γ ) → + ∀ { i : Obj I } → Sets [ Sets [ TMap (LimitNat A I Sets Γ (a0 limita) (t0 limita) U) i o limitu a Γ t limita ] ≈ TMap t i ] + t0f=tu = {!!} + limit-uniquenessu : { a : Obj (Sets {c₂}) } → (Γ : Functor I A ) + → ( limita : Limit A I Γ ) → + ( t : NTrans I Sets ( K Sets I a ) (U ○ Γ) ) → ( f : Hom Sets a (FObj U (a0 limita)) ) + → ( ∀ { i : Obj I } → (Sets [ TMap (LimitNat A I Sets Γ (a0 limita) (t0 limita) U) i o f ] ≡ TMap t i ) ) + → Sets [ limitu a Γ t limita ≈ f ] + limit-uniquenessu = {!!} +