Mercurial > hg > Members > kono > Proof > category
changeset 525:cb35d6b25559
on going ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 27 Mar 2017 10:18:08 +0900 |
parents | d6739779b4ac |
children | b035cd3be525 |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 15 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Mon Mar 27 06:55:25 2017 +0900 +++ b/SetsCompleteness.agda Mon Mar 27 10:18:08 2017 +0900 @@ -134,8 +134,14 @@ lemma5 refl x = refl -- somehow this is not equal to lemma1 uniqueness : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → Sets [ k h fh=gh ≈ k' ] - uniqueness {d} {h} {fh=gh} {k'} ek'=h = extensionality Sets ( λ ( x : d ) → - elm-cong ( k h fh=gh x) ( k' x ) (lemma5 {d} {h} {fh=gh} {k'} ek'=h x ) ) + uniqueness {d} {h} {fh=gh} {k'} ek'=h = extensionality Sets ( λ ( x : d ) → begin + k h fh=gh x + ≡⟨ elm-cong ( k h fh=gh x) ( k' x ) (lemma5 {d} {h} {fh=gh} {k'} ek'=h x ) ⟩ + k' x + ∎ ) where + open import Relation.Binary.PropositionalEquality + open ≡-Reasoning + open Functor open NTrans @@ -165,9 +171,11 @@ open IProduct +record slim { c₂ } ( sobj : Set c₂ → Set c₂ ) ( smap : { a b : Set c₂ } ( f : a → b ) → Set c₂ ) : Set c₂ where + SetsLimit : { c₂ : Level} → Limit Sets Sets Γ SetsLimit { c₂} = record { - a0 = {!!} + a0 = slim ΓObj ΓMap ; t0 = record { TMap = λ i → Sets [ proj i o e i ] ; isNTrans = record { commute = {!!} } @@ -180,10 +188,10 @@ } where eqa : {i j : Obj Sets} (f : Hom Sets i j) → sequ (Obj Sets) (Obj Sets) {!!} {!!} -- {!!} {!!} (FMap Γ f o proj i) ( proj j ) eqa f = {!!} - e : (i : Obj Sets) → Hom Sets (FObj (K Sets Sets ( sequ {!!} {!!} {!!} {!!} )) i ) (iproduct (Obj Sets) (λ I → ΓObj (Obj Sets))) - e i = λ x → record { pi1 = λ i → record { obj = sequ ? {!!} {!!} {!!} } } - proj : (i : Obj Sets) → ( prod : iproduct (Obj Sets) (λ i → ΓObj (Obj Sets) )) → FObj Γ i - proj i prod = record { obj = {!!} } + e : (i : Obj Sets) → Hom Sets (FObj (K Sets Sets (slim ΓObj ΓMap)) i ) (iproduct (slim ΓObj ΓMap) (λ I → ΓObj (slim ΓObj ΓMap))) + e i = λ x → record { pi1 = λ j → record { obj = record {}} } + proj : (i : Obj Sets) → ( prod : iproduct (slim ΓObj ΓMap) (λ i → ΓObj (slim ΓObj ΓMap))) → FObj Γ i + proj i prod = record { obj = ? } comm1 : {a b : Obj Sets} {f : Hom Sets a b} → Sets [ Sets [ FMap Γ f o (λ lim → {!!} ) ] ≈ Sets [ (λ lim → {!!}) o FMap (K Sets Sets {!!}) f ] ] comm1 {a} {b} {f} = {!!}