changeset 573:cc67ef472636

fix
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 25 Apr 2017 11:24:27 +0900
parents 46e417754601
children dbb5da4ab08f
files SetsCompleteness.agda
diffstat 1 files changed, 48 insertions(+), 52 deletions(-) [+]
line wrap: on
line diff
--- a/SetsCompleteness.agda	Mon Apr 24 22:26:59 2017 +0900
+++ b/SetsCompleteness.agda	Tue Apr 25 11:24:27 2017 +0900
@@ -15,9 +15,9 @@
 
 ≡cong = Relation.Binary.PropositionalEquality.cong 
 
-lemma1 :  { c₂ : Level  } {a b  : Obj (Sets { c₂})} {f g : Hom Sets a b} →
+≈-to-≡ :  { c₂ : Level  } {a b  : Obj (Sets { c₂})} {f g : Hom Sets a b} →
    Sets [ f ≈ g ] → (x : a ) → f x  ≡ g x
-lemma1 refl  x  = refl
+≈-to-≡ refl  x  = refl
 
 record Σ {a} (A : Set a) (B : Set a) : Set a where
   constructor _,_
@@ -47,9 +47,9 @@
           prod-cong a b {c} {f} {.f} {g} {.g} refl refl = refl
 
 
-record iproduct {a} (I : Set a)  ( pi0 : I → Set a ) : Set a where
+record iproduct {a} (I : Set a)  ( Product : I → Set a ) : Set a where
     field
-       pi1 : ( i : I ) → pi0 i
+       proj : ( i : I ) → Product i
 
 open iproduct
 
@@ -58,7 +58,7 @@
 SetsIProduct I fi = record {
        ai =  fi
        ; iprod = iproduct I fi
-       ; pi  = λ i prod  → pi1 prod i
+       ; pi  = λ i prod  → proj prod i
        ; isIProduct = record {
               iproduct = iproduct1
             ; pif=q = pif=q
@@ -67,17 +67,17 @@
        }
    } where
        iproduct1 : {q : Obj Sets} → ((i : I) → Hom Sets q (fi i)) → Hom Sets q (iproduct I fi)
-       iproduct1 {q} qi x = record { pi1 = λ i → (qi i) x  }
-       pif=q : {q : Obj Sets} (qi : (i : I) → Hom Sets q (fi i)) {i : I} → Sets [ Sets [ (λ prod → pi1 prod i) o iproduct1 qi ] ≈ qi i ]
+       iproduct1 {q} qi x = record { proj = λ i → (qi i) x  }
+       pif=q : {q : Obj Sets} (qi : (i : I) → Hom Sets q (fi i)) {i : I} → Sets [ Sets [ (λ prod → proj prod i) o iproduct1 qi ] ≈ qi i ]
        pif=q {q} qi {i} = refl
-       ip-uniqueness : {q : Obj Sets} {h : Hom Sets q (iproduct I fi)} → Sets [ iproduct1 (λ i → Sets [ (λ prod → pi1 prod i) o h ]) ≈ h ]
+       ip-uniqueness : {q : Obj Sets} {h : Hom Sets q (iproduct I fi)} → Sets [ iproduct1 (λ i → Sets [ (λ prod → proj prod i) o h ]) ≈ h ]
        ip-uniqueness = refl
        ipcx : {q :  Obj Sets} {qi qi' : (i : I) → Hom Sets q (fi i)} → ((i : I) → Sets [ qi i ≈ qi' i ]) → (x : q) → iproduct1 qi x ≡ iproduct1 qi' x
        ipcx {q} {qi} {qi'} qi=qi x  = 
               begin
-                record { pi1 = λ i → (qi i) x  }
-             ≡⟨ ≡cong ( λ QIX → record { pi1 = QIX } ) ( extensionality Sets (λ i → ≡cong ( λ f → f x )  (qi=qi i)  )) ⟩
-                record { pi1 = λ i → (qi' i) x  }
+                record { proj = λ i → (qi i) x  }
+             ≡⟨ ≡cong ( λ qi → record { proj = qi } ) ( extensionality Sets (λ i → ≈-to-≡  (qi=qi i) x )) ⟩
+                record { proj = λ i → (qi' i) x  }
              ∎  where
                   open  import  Relation.Binary.PropositionalEquality 
                   open ≡-Reasoning 
@@ -117,7 +117,7 @@
 fe=ge  =  extensionality Sets (fe=ge0 ) 
 k : {  c₂ : Level}  →  {a b : Obj (Sets {c₂}) }  {f g : Hom (Sets {c₂}) a b} →  {d : Obj Sets} (h : Hom Sets d a) 
      → Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ] → Hom Sets d (sequ a b f g)
-k {_} {_} {_} {_} {_} {d} h eq = λ x → elem  (h x) ( ≡cong ( λ y → y x ) eq )
+k {_} {_} {_} {_} {_} {d} h eq = λ x → elem  (h x) ( ≈-to-≡ eq x )
 ek=h : {  c₂ : Level}  →  {a b : Obj (Sets {c₂}) }  {f g : Hom (Sets {c₂}) a b} →  {d : Obj Sets} {h : Hom Sets d a} {eq : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} → Sets [ Sets [ (λ e → equ {_} {a} {b} {f} {g} e )  o k h eq ] ≈ h ]
 ek=h {_} {_} {_} {_} {_} {d} {h} {eq} = refl 
 
@@ -137,7 +137,7 @@
            injection f =  ∀ x y  → f x ≡ f y →  x  ≡ y
            lemma5 :   {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} →
                 Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → (x : d ) → equ {_} {a} {b} {f} {g} (k h fh=gh x) ≡ equ (k' x)
-           lemma5 refl  x  = refl   -- somehow this is not equal to lemma1
+           lemma5 refl  x  = refl   -- somehow this is not equal to ≈-to-≡
            uniqueness :   {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} →
                 Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → Sets [ k h fh=gh  ≈ k' ]
            uniqueness  {d} {h} {fh=gh} {k'} ek'=h =  extensionality Sets  ( λ ( x : d ) →  begin
@@ -178,19 +178,15 @@
     {i j : Obj C } →  ( f : I → I ) →  ΓObj s Γ i → ΓObj  s Γ j 
 ΓMap  s Γ {i} {j} f = FMap Γ ( hom← s f ) 
 
-record snproj  { c₂ }  { I OC :  Set  c₂ } ( sobj :  OC →  Set  c₂ ) ( smap : { i j :  OC  }  → (f : I → I )→  sobj i → sobj j ) 
-      :  Set   c₂  where
-   field 
-       snmap : ( i : OC ) → sobj i 
-
-open snproj
 
 record slim  { c₂ }  { I OC :  Set  c₂ } ( sobj :  OC →  Set  c₂ ) ( smap : { i j :  OC  }  → (f : I → I )→  sobj i → sobj j ) 
       :  Set   c₂  where
    field 
-       slequ : { i j : OC } → ( f :  I → I ) →  sequ (snproj sobj smap ) (sobj j) ( λ x → smap f ( snmap x i ) ) (  λ x → snmap x j )
-   slobj : OC →  Set  c₂ 
-   slobj i = sobj i
+       slequ : { i j : OC } → ( f :  I → I ) →  sequ (iproduct OC sobj ) (sobj j) ( λ x → smap f ( proj x i ) ) (  λ x → proj x j )
+   snmap : OC →  Set  c₂ 
+   snmap i = sobj i
+   ipp : ( ( i : OC ) → sobj i ) → iproduct OC sobj
+   ipp qi = record { proj = qi }
 
 open slim
 
@@ -199,39 +195,39 @@
 
 lemma-equ : {  c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I :  Set  c₁ ) ( s : Small C I )  ( Γ : Functor C (Sets  {c₁} ) ) 
       {a b : Obj C  } { f : I → I }  { se : slim (ΓObj s Γ) (ΓMap s Γ)  }
-          → snmap (equ (slequ se {a} {a} (λ x → x))) a ≡ snmap (equ (slequ se {a} {b} f )) a 
-lemma-equ C I s Γ {a} {b} {f} {se} = begin
-                  snmap (equ (slequ se {a} {a} (λ x → x))) a
-             ≡⟨ ≡cong ( λ p → snmap p a )  (  ≡cong ( λ QIX → record { snmap = QIX } ) (  
+          → proj (equ (slequ se {a} {a} (λ x → x))) a ≡ proj (equ (slequ se {a} {b} f )) a 
+lemma-equ C I s Γ {a} {b} {f}  {se} = begin
+                  proj (equ (slequ se {a} {a} (λ x → x))) a
+             ≡⟨ ≡cong ( λ p → proj p a )  (  ≡cong ( λ QIX → record { proj = QIX } ) (  
                 extensionality Sets  ( λ  x  →  ≡cong ( λ qi → qi x  )  refl
               ) )) ⟩
-                  snmap (equ (slequ se {a} {b} f )) a
+                  proj (equ (slequ se {a} {b} f )) a
              ∎   where
                   open  import  Relation.Binary.PropositionalEquality
                   open ≡-Reasoning
 
 Cone : {  c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I :  Set  c₁ ) ( s : Small C I )  ( Γ : Functor C (Sets  {c₁} ) )   
-    → NTrans C Sets (K Sets C (slim (ΓObj s Γ) (ΓMap s Γ) )) Γ
+    → NTrans C Sets (K Sets C (slim (ΓObj s Γ) (ΓMap s Γ)  )) Γ
 Cone C I s  Γ =  record {
-               TMap = λ i →  λ se → snmap (equ (slequ se {i} {i} (λ x → x )) ) i
+               TMap = λ i →  λ se → proj (equ (slequ se {i} {i} (λ x → x )) ) i
              ; isNTrans = record { commute = commute1 }
       } where
-         commute1 :  {a b : Obj C} {f : Hom C a b} → Sets [ Sets [ FMap Γ f o (λ se → snmap (equ (slequ se {a} {a} (λ x → x))) a) ] ≈
-                Sets [ (λ se → snmap (equ (slequ se {b} {b} (λ x → x))) b) o FMap (K Sets C (slim (ΓObj s Γ) (ΓMap s Γ))) f ] ]
+         commute1 :  {a b : Obj C} {f : Hom C a b} → Sets [ Sets [ FMap Γ f o (λ se → proj (equ (slequ se {a} {a} (λ x → x))) a) ] ≈
+                Sets [ (λ se → proj (equ (slequ se {b} {b} (λ x → x))) b) o FMap (K Sets C (slim (ΓObj s Γ) (ΓMap s Γ) )) f ] ]
          commute1 {a} {b} {f} =   extensionality Sets  ( λ  se  →  begin  
-                   (Sets [ FMap Γ f o (λ se₁ → snmap (equ (slequ se₁ (λ x → x))) a) ]) se
+                   (Sets [ FMap Γ f o (λ se₁ → proj (equ (slequ se₁ (λ x → x))) a) ]) se
              ≡⟨⟩
-                   FMap Γ f (snmap (equ (slequ se (λ x → x))) a)
-             ≡⟨  ≡cong ( λ g → FMap Γ g (snmap (equ (slequ se (λ x → x))) a))  (sym ( hom-iso s  ) ) ⟩
-                   FMap Γ  (hom← s ( hom→ s f))  (snmap (equ (slequ se {a} {a} (λ x → x))) a)
+                   FMap Γ f (proj (equ (slequ se (λ x → x))) a)
+             ≡⟨  ≡cong ( λ g → FMap Γ g (proj (equ (slequ se (λ x → x))) a))  (sym ( hom-iso s  ) ) ⟩
+                   FMap Γ  (hom← s ( hom→ s f))  (proj (equ (slequ se {a} {a} (λ x → x))) a)
              ≡⟨ ≡cong ( λ g →  FMap Γ  (hom← s ( hom→ s f)) g )  ( lemma-equ C I s Γ  )   ⟩
-                   FMap Γ  (hom← s ( hom→ s f))  (snmap (equ (slequ se (hom→ s f ))) a)
+                   FMap Γ  (hom← s ( hom→ s f))  (proj (equ (slequ se (hom→ s f ))) a)
              ≡⟨  fe=ge0 ( slequ se (hom→ s f ) ) ⟩
-                   snmap (equ (slequ se ( hom→ s f ) )) b
+                   proj (equ (slequ se ( hom→ s f ) )) b
              ≡⟨ sym ( lemma-equ C I s Γ )  ⟩
-                   snmap (equ (slequ se (λ x → x))) b
+                   proj (equ (slequ se (λ x → x))) b
              ≡⟨⟩
-                  (Sets [ (λ se₁ → snmap (equ (slequ se₁ (λ x → x))) b) o FMap (K Sets C (slim (ΓObj s Γ) (ΓMap s Γ))) f ]) se
+                  (Sets [ (λ se₁ → proj (equ (slequ se₁ (λ x → x))) b) o FMap (K Sets C (slim (ΓObj s Γ) (ΓMap s Γ) )) f ]) se
              ∎  ) where
                   open  import  Relation.Binary.PropositionalEquality
                   open ≡-Reasoning
@@ -252,37 +248,37 @@
               limit2 :  (a : Obj Sets) → ( t : NTrans C Sets (K Sets C a) Γ ) → {i j : Obj C } →  ( f : I → I ) 
                     → ( x : a )  → ΓMap s Γ f (TMap t i x) ≡ TMap t j x
               limit2 a t f x =   ≡cong ( λ g → g x )   ( IsNTrans.commute ( isNTrans t  ) )
-              limit1 :  (a : Obj Sets) → ( t : NTrans C Sets (K Sets C a) Γ ) → Hom Sets a (slim (ΓObj s Γ) (ΓMap s Γ))
+              limit1 :  (a : Obj Sets) → ( t : NTrans C Sets (K Sets C a) Γ ) → Hom Sets a (slim (ΓObj s Γ) (ΓMap s Γ) )
               limit1 a t x = record {
-                   slequ = λ {i} {j} f → elem ( record { snmap = λ i → TMap t i x }  ) ( limit2 a t f x  )
+                   slequ = λ {i} {j} f → elem ( record { proj = λ i → TMap t i x }  ) ( limit2 a t f x  )
                 } 
-              uniquness2 : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {f : Hom Sets a (slim (ΓObj s Γ) (ΓMap s Γ) )} 
+              uniquness2 : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {f : Hom Sets a (slim (ΓObj s Γ) (ΓMap s Γ)  )} 
                      →  ( i j : Obj C  ) →
                     ({i  : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ) i o f ] ≈ TMap t i ]) →  (f' : I → I ) →  (x : a ) 
-                     →  record { snmap = λ i₁ → TMap t i₁ x }  ≡ equ (slequ (f x) f')
+                     →  record { proj = λ i₁ → TMap t i₁ x }  ≡ equ (slequ (f x) f')
               uniquness2 {a} {t} {f} i j cif=t f' x = begin
-                  record { snmap = λ i → TMap t i x }
-                ≡⟨   ≡cong ( λ g → record { snmap = λ i → g i  } ) (  extensionality Sets  ( λ  i  →  sym (  ≡cong ( λ e → e x ) cif=t ) ) )  ⟩
-                  record { snmap = λ i → (Sets [ TMap (Cone C I s Γ) i o f ]) x }
+                  record { proj = λ i → TMap t i x }
+                ≡⟨   ≡cong ( λ g → record { proj = λ i → g i  } ) (  extensionality Sets  ( λ  i  →  sym (  ≡cong ( λ e → e x ) cif=t ) ) )  ⟩
+                  record { proj = λ i → (Sets [ TMap (Cone C I s Γ) i o f ]) x }
                 ≡⟨⟩
-                  record { snmap = λ i →   snmap (equ (slequ (f x) {i} {i} (λ x → x )) ) i }
-                ≡⟨ ≡cong ( λ g →   record { snmap = λ i →  g i  } ) (  extensionality Sets  ( λ  i  → lemma-equ C I s Γ ))  ⟩
-                  record { snmap = λ i →  snmap (equ (slequ (f x) f')) i  }
+                  record { proj = λ i →   proj (equ (slequ (f x) {i} {i} (λ x → x )) ) i }
+                ≡⟨ ≡cong ( λ g →   record { proj = λ i →  g i  } ) (  extensionality Sets  ( λ  i  → lemma-equ C I s Γ ))  ⟩
+                  record { proj = λ i →  proj (equ (slequ (f x) f')) i  }
                 ∎   where
                   open  import  Relation.Binary.PropositionalEquality
                   open ≡-Reasoning
-              uniquness1 : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {f : Hom Sets a (slim (ΓObj s Γ) (ΓMap s Γ) )} →
+              uniquness1 : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {f : Hom Sets a (slim (ΓObj s Γ) (ΓMap s Γ)  )} →
                     ({i  : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ) i o f ] ≈ TMap t i ]) → Sets [ limit1 a t  ≈ f ]
               uniquness1 {a} {t} {f} cif=t =  extensionality Sets  ( λ  x  →  begin
                   limit1 a t x
                 ≡⟨⟩
-                   record { slequ = λ {i} {j} f' → elem ( record { snmap = λ i → TMap t i x }  ) ( limit2 a t f' x ) }
+                   record { slequ = λ {i} {j} f' → elem ( record { proj = λ i → TMap t i x }  ) ( limit2 a t f' x ) }
                 ≡⟨ ≡cong ( λ e → record { slequ =  λ {i} {j} f' → e i j f' x } ) (
                         extensionality Sets  ( λ  i  →
                            extensionality Sets  ( λ  j  →
                                extensionality Sets  ( λ  f'  →
                                    extensionality Sets  ( λ  x  → 
-                  elm-cong (  elem ( record { snmap = λ i → TMap t i x }  ) ( limit2 a t f' x )) (slequ (f x) f' ) (uniquness2 {a} {t} {f} i j cif=t f' x ) )
+                  elm-cong (  elem ( record { proj = λ i → TMap t i x }  ) ( limit2 a t f' x )) (slequ (f x) f' ) (uniquness2 {a} {t} {f} i j cif=t f' x ) )
                            )))
                      ) ⟩
                    record { slequ = λ {i} {j} f' → slequ (f x ) f' }