Mercurial > hg > Members > kono > Proof > category
changeset 311:cf278f4d0b32
on going...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 05 Jan 2014 19:34:11 +0900 |
parents | c0439b11c7e7 |
children | 702adc45704f |
files | freyd.agda |
diffstat | 1 files changed, 4 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/freyd.agda Sun Jan 05 19:29:52 2014 +0900 +++ b/freyd.agda Sun Jan 05 19:34:11 2014 +0900 @@ -9,7 +9,7 @@ open import Relation.Binary.Core open Functor --- C is small full subcategory of A +-- C is small full subcategory of A ( C is image of F ) record SmallFullSubcategory {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (F : Functor A A ) ( FMap← : { a b : Obj A } → Hom A (FObj F a) (FObj F b ) → Hom A a b ) @@ -22,9 +22,8 @@ -- pre-initial -record PreInitialSmallFullSubcategory {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) - {F : Functor A A } { FMap← : { a b : Obj A } → Hom A (FObj F a) (FObj F b ) → Hom A a b } - (SFS : SmallFullSubcategory A F FMap← ) : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where +record PreInitial {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) + (F : Functor A A ) : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where field preinitial : ∀{ a : Obj A } → { b : Obj A } → Hom A ( FObj F b ) a uniqueness : ∀{ a : Obj A } → { b : Obj A } → ( f : Hom A ( FObj F b ) a ) → @@ -44,7 +43,7 @@ (F : Functor A A ) ( FMap← : { a b : Obj A } → Hom A (FObj F a) (FObj F b ) → Hom A a b ) -- ( lim : ( Γ : Functor I A ) → { a0 : Obj A } { t0 : NTrans I A ( K A I a0 ) Γ } → Limit A I Γ a0 t0 ) -- completeness (SFS : SmallFullSubcategory A F FMap← ) → - (PreInitialSmallFullSubcategory A SFS ) → { i : Obj A } → HasInitialObject A i + (PreInitial A F ) → { i : Obj A } → HasInitialObject A i initialFromPreInitialFullSubcategory A F FMap← SFS PI {i} = record { initial = {!!} ; uniqueness = {!!}