Mercurial > hg > Members > kono > Proof > category
changeset 826:d1569e80fe0b graph-to-ccc
fix comment
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 09 May 2019 08:34:27 +0900 |
parents | 8f41ad966eaa |
children | 054eecbb5189 |
files | CCCGraph.agda |
diffstat | 1 files changed, 24 insertions(+), 42 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph.agda Fri May 03 17:11:33 2019 +0900 +++ b/CCCGraph.agda Thu May 09 08:34:27 2019 +0900 @@ -17,7 +17,9 @@ open import Category.Sets +------------------------------------------------------ -- Sets is a CCC +------------------------------------------------------ postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionality c₂ c₂ @@ -96,6 +98,10 @@ module ccc-from-graph where +------------------------------------------------------ +-- CCC generated from a graph +------------------------------------------------------ + open import Relation.Binary.PropositionalEquality renaming ( cong to ≡-cong ) hiding ( [_] ) open import graph open graphtocat @@ -132,40 +138,6 @@ iso-right : {v : Level} {S : Set v} → (x : one {v} {S} ) → iso← x ( iso→ x ) iso-right (elm x) = elmeq --- record one {v : Level} {S : Set v} : Set (suc v) where --- field --- elm : S --- --- iso→ : {v : Level} {S : Set v} → one {v} {S} → One {Level.zero} → S --- iso→ x OneObj = one.elm x --- iso← : {v : Level} {S : Set v} → one {v} {S} → S → One {Level.zero} --- iso← x y = OneObj --- --- iso-left : {v : Level} {S : Set v} → (x : one {v} {S} ) → (a : S ) → iso→ x ( iso← x a ) ≡ a --- iso-left x a = {!!} --- --- iso-right : {v : Level} {S : Set v} → (x : one {v} {S} ) → iso← x ( iso→ x OneObj ) ≡ OneObj --- iso-right x = refl - - record one' {v : Level} {S : Set v} : Set (suc v) where - field - elm' : S - iso→' : One {Level.zero} → S - iso←' : S → One {Level.zero} - iso-left' : iso→' ( iso←' elm' ) ≡ elm' - iso-right' : iso←' ( iso→' OneObj ) ≡ OneObj - - tmp : {v : Level} {S : Set v} → one {v} {S} → one' {v} {S} - tmp x = record { - elm' = iso→ x - ; iso→' = λ _ → iso→ x - ; iso←' = λ _ → OneObj - ; iso-left' = refl - ; iso-right' = refl - } - - - record SM {v : Level} : Set (suc v) where field graph : Graph {v} {v} @@ -221,6 +193,10 @@ IsFunctor.≈-cong isf refl = refl IsFunctor.distr isf {a} {b} {c} {g} {f} = extensionality Sets ( λ z → distr {a} {b} {c} {g} {f} z ) +------------------------------------------------------ +-- Cart Category of CCC and CCC preserving Functor +------------------------------------------------------ + --- --- SubCategoy SC F A is a category with Obj = FObj F, Hom = FMap --- @@ -265,6 +241,10 @@ ; associative = λ {a} {b} {c} {d} {f} {g} {h} → let open ≈-Reasoning (CAT) in assoc {cat a} {cat b} {cat c} {cat d} {cmap f} {cmap g} {cmap h} }} +------------------------------------------------------ +-- Grph Category of Graph and Graph mapping +------------------------------------------------------ + open import graph open Graph @@ -288,8 +268,8 @@ _&_ : {v v' : Level} {x y z : Graph {v} {v'}} ( f : GMap y z ) ( g : GMap x y ) → GMap x z f & g = record { vmap = λ x → vmap f ( vmap g x ) ; emap = λ x → emap f ( emap g x ) } -Grp : {v v' : Level} → Category (suc (v ⊔ v')) (suc v ⊔ v') (suc ( v ⊔ v')) -Grp {v} {v'} = record { +Grph : {v v' : Level} → Category (suc (v ⊔ v')) (suc v ⊔ v') (suc ( v ⊔ v')) +Grph {v} {v'} = record { Obj = Graph {v} {v'} ; Hom = GMap {v} {v'} ; _o_ = _&_ @@ -324,7 +304,9 @@ [ B ] ϕ == ψ → [ C ] (emap h ψ) == π → [ C ] (emap h ϕ) == π lemma _ _ _ (mrefl refl) (mrefl refl) = mrefl refl ---- Forgetful functor +------------------------------------------------------ +--- CCC → Grph Forgetful functor +------------------------------------------------------ ≃-cong : {c₁ c₂ ℓ : Level} (B : Category c₁ c₂ ℓ ) → {a b a' b' : Obj B } → { f f' : Hom B a b } @@ -340,19 +322,19 @@ g' ∎ ) -fobj : {c₁ c₂ ℓ : Level} → Obj (Cart {c₁} {c₂} {ℓ} ) → Obj (Grp {c₁} {c₂}) +fobj : {c₁ c₂ ℓ : Level} → Obj (Cart {c₁} {c₂} {ℓ} ) → Obj (Grph {c₁} {c₂}) fobj a = record { vertex = Obj (cat a) ; edge = Hom (cat a) } -fmap : {c₁ c₂ ℓ : Level} → {a b : Obj (Cart {c₁} {c₂} {ℓ} ) } → Hom (Cart {c₁} {c₂} {ℓ} ) a b → Hom (Grp {c₁} {c₂}) ( fobj a ) ( fobj b ) +fmap : {c₁ c₂ ℓ : Level} → {a b : Obj (Cart {c₁} {c₂} {ℓ} ) } → Hom (Cart {c₁} {c₂} {ℓ} ) a b → Hom (Grph {c₁} {c₂}) ( fobj a ) ( fobj b ) fmap f = record { vmap = FObj (cmap f) ; emap = FMap (cmap f) } UX : {c₁ c₂ ℓ : Level} → ( ≈-to-≡ : (A : Category c₁ c₂ ℓ ) → {a b : Obj A} → {f g : Hom A a b} → A [ f ≈ g ] → f ≡ g ) - → Functor (Cart {c₁} {c₂} {ℓ} ) (Grp {c₁} {c₂}) + → Functor (Cart {c₁} {c₂} {ℓ} ) (Grph {c₁} {c₂}) FObj (UX {c₁} {c₂} {ℓ} ≈-to-≡ ) a = fobj a FMap (UX ≈-to-≡) f = fmap f isFunctor (UX {c₁} {c₂} {ℓ} ≈-to-≡) = isf where -- if we don't need ≈-cong ( i.e. f ≈ g → UX f =m= UX g ), all lemmas are not necessary open import HomReasoning - isf : IsFunctor (Cart {c₁} {c₂} {ℓ} ) (Grp {c₁} {c₂}) fobj fmap + isf : IsFunctor (Cart {c₁} {c₂} {ℓ} ) (Grph {c₁} {c₂}) fobj fmap IsFunctor.identity isf {a} {b} {f} e = mrefl refl IsFunctor.distr isf f = mrefl refl IsFunctor.≈-cong isf {a} {b} {f} {g} eq {x} {y} e = lemma (extensionality Sets ( λ z → lemma4 ( @@ -372,7 +354,7 @@ --- SM.sobj (sm g) = {!!} --- SM.smap (sm g) = {!!} --- ---- HX : {v : Level } ( x : Obj (Grp {v}) ) → Obj (Grp {v}) +--- HX : {v : Level } ( x : Obj (Grph {v}) ) → Obj (Grph {v}) --- HX {v} x = {!!} -- FObj UX ( record { cat = Sets {v} ; ccc = sets } ) --- ---