Mercurial > hg > Members > kono > Proof > category
changeset 702:d16327b48b83
Monoidal Functor ( two functor remains )
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 22 Nov 2017 02:55:36 +0900 |
parents | 7a729bb62ce3 |
children | df3f1aae984f |
files | monoidal.agda |
diffstat | 1 files changed, 40 insertions(+), 35 deletions(-) [+] |
line wrap: on
line diff
--- a/monoidal.agda Wed Nov 22 02:09:22 2017 +0900 +++ b/monoidal.agda Wed Nov 22 02:55:36 2017 +0900 @@ -102,13 +102,9 @@ open import Category.Cat - record IsMonoidalFunctor {c₁ c₂ ℓ : Level} {C D : Category c₁ c₂ ℓ} ( M : Monoidal C ) ( N : Monoidal D ) ( MF : Functor C D ) - ( F● : Functor ( C × C ) D ) - ( F⊗ : Functor ( C × C ) D ) - ( φab : NTrans ( C × C ) D F● F⊗ ) - ( φ : Hom D (Monoidal.m-i N) (FObj MF (Monoidal.m-i M) ) ) + ( ψ : Hom D (Monoidal.m-i N) (FObj MF (Monoidal.m-i M) ) ) : Set ( suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁)) where _⊗_ : (x y : Obj C ) → Obj C _⊗_ x y = (IsMonoidal._□_ (Monoidal.isMonoidal M) ) x y @@ -118,6 +114,28 @@ _●_ x y = (IsMonoidal._□_ (Monoidal.isMonoidal N) ) x y _■_ : {a b c d : Obj D } ( f : Hom D a c ) ( g : Hom D b d ) → Hom D ( a ● b ) ( c ● d ) _■_ f g = FMap (Monoidal.m-bi N) ( f , g ) + F● : Functor ( C × C ) D + F● = record { + FObj = λ x → (FObj MF (proj₁ x) ) ● (FObj MF (proj₂ x) ) + ; FMap = λ {x : Obj ( C × C ) } {y} f → FMap (Monoidal.m-bi N) ( FMap MF (proj₁ f ) , FMap MF (proj₂ f) ) + ; isFunctor = record { + ≈-cong = {!!} + ; identity = {!!} + ; distr = {!!} + } + } + F⊗ : Functor ( C × C ) D + F⊗ = record { + FObj = λ x → FObj MF ( proj₁ x ⊗ proj₂ x ) + ; FMap = λ {a} {b} f → FMap MF ( FMap (Monoidal.m-bi M) ( proj₁ f , proj₂ f) ) + ; isFunctor = record { + ≈-cong = {!!} + ; identity = {!!} + ; distr = {!!} + } + } + field + φab : NTrans ( C × C ) D F● F⊗ open Iso open Monoidal open IsMonoidal hiding ( _■_ ; _□_ ) @@ -127,36 +145,39 @@ αD {a} {b} {c} = ≅→ (mα-iso (isMonoidal N) {a} {b} {c}) F : Obj C → Obj D F x = FObj MF x + φ : ( x y : Obj C ) → Hom D ( FObj F● (x , y) ) ( FObj F⊗ ( x , y )) + φ x y = NTrans.TMap φab ( x , y ) 1●φBC : {a b c : Obj C} → Hom D ( F a ● ( F b ● F c ) ) ( F a ● ( F ( b ⊗ c ) )) - 1●φBC {a} {b} {c} = id1 D (F a) ■ {!!} + 1●φBC {a} {b} {c} = id1 D (F a) ■ φ b c φAB⊗C : {a b c : Obj C} → Hom D ( F a ● ( F ( b ⊗ c ) )) (F ( a ⊗ ( b ⊗ c ))) - φAB⊗C {a} {b} {c} = {!!} + φAB⊗C {a} {b} {c} = φ a (b ⊗ c ) φAB●1 : {a b c : Obj C} → Hom D ( ( F a ● F b ) ● F c ) ( F ( a ⊗ b ) ● F c ) - φAB●1 {a} {b} {c} = {!!} ■ id1 D (F c) + φAB●1 {a} {b} {c} = φ a b ■ id1 D (F c) φA⊗BC : {a b c : Obj C} → Hom D ( F ( a ⊗ b ) ● F c ) (F ( (a ⊗ b ) ⊗ c )) - φA⊗BC {a} {b} {c} = {!!} + φA⊗BC {a} {b} {c} = φ ( a ⊗ b ) c FαC : {a b c : Obj C} → Hom D (F ( (a ⊗ b ) ⊗ c )) (F ( a ⊗ ( b ⊗ c ))) FαC {a} {b} {c} = FMap MF ( ≅→ (mα-iso (isMonoidal M) {a} {b} {c}) ) - 1●φ : { a b : Obj C } → Hom D (F a ● Monoidal.m-i N ) ( F a ● F ( Monoidal.m-i M ) ) - 1●φ {a} {b} = id1 D (F a) ■ φ + 1●ψ : { a b : Obj C } → Hom D (F a ● Monoidal.m-i N ) ( F a ● F ( Monoidal.m-i M ) ) + 1●ψ{a} {b} = id1 D (F a) ■ ψ φAIC : { a b : Obj C } → Hom D ( F a ● F ( Monoidal.m-i M ) ) (F ( a ⊗ Monoidal.m-i M )) - φAIC {a} {b} = {!!} + φAIC {a} {b} = φ a ( Monoidal.m-i M ) FρC : { a b : Obj C } → Hom D (F ( a ⊗ Monoidal.m-i M ))( F a ) FρC {a} {b} = FMap MF ( ≅→ (mρ-iso (isMonoidal M) {a} ) ) ρD : { a b : Obj C } → Hom D (F a ● Monoidal.m-i N ) ( F a ) ρD {a} {b} = ≅→ (mρ-iso (isMonoidal N) {F a} ) - φ●1 : { a b : Obj C } → Hom D (Monoidal.m-i N ● F b ) ( F ( Monoidal.m-i M ) ● F b ) - φ●1 {a} {b} = φ ■ id1 D (F b) + ψ●1 : { a b : Obj C } → Hom D (Monoidal.m-i N ● F b ) ( F ( Monoidal.m-i M ) ● F b ) + ψ●1 {a} {b} = ψ ■ id1 D (F b) φICB : { a b : Obj C } → Hom D ( F ( Monoidal.m-i M ) ● F b ) ( F ( ( Monoidal.m-i M ) ⊗ b ) ) - φICB {a} {b} = {!!} + φICB {a} {b} = φ ( Monoidal.m-i M ) b FλD : { a b : Obj C } → Hom D ( F ( ( Monoidal.m-i M ) ⊗ b ) ) (F b ) FλD {a} {b} = FMap MF ( ≅→ (mλ-iso (isMonoidal M) {b} ) ) λD : { a b : Obj C } → Hom D (Monoidal.m-i N ● F b ) (F b ) λD {a} {b} = ≅→ (mλ-iso (isMonoidal N) {F b} ) field comm1 : {a b c : Obj C } → D [ D [ φAB⊗C {a} {b} {c} o D [ 1●φBC o αD ] ] ≈ D [ FαC o D [ φA⊗BC o φAB●1 ] ] ] - comm-idr : {a b : Obj C } → D [ D [ FρC {a} {b} o D [ φAIC {a} {b} o 1●φ {a} {b} ] ] ≈ ρD {a} {b} ] - comm-idl : {a b : Obj C } → D [ D [ FλD {a} {b} o D [ φICB {a} {b} o φ●1 {a} {b} ] ] ≈ λD {a} {b} ] + comm-idr : {a b : Obj C } → D [ D [ FρC {a} {b} o D [ φAIC {a} {b} o 1●ψ{a} {b} ] ] ≈ ρD {a} {b} ] + comm-idl : {a b : Obj C } → D [ D [ FλD {a} {b} o D [ φICB {a} {b} o ψ●1 {a} {b} ] ] ≈ λD {a} {b} ] + where record MonoidalFunctor {c₁ c₂ ℓ : Level} {C D : Category c₁ c₂ ℓ} ( M : Monoidal C ) ( N : Monoidal D ) : Set ( suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁)) where @@ -166,21 +187,5 @@ _●_ x y = (IsMonoidal._□_ (Monoidal.isMonoidal N) ) x y field MF : Functor C D - F● : Functor ( C × C ) D - F● = record { - FObj = λ x → (FObj MF (proj₁ x) ) ● (FObj MF (proj₂ x) ) - ; FMap = λ {x : Obj ( C × C ) } {y} f → FMap (Monoidal.m-bi N) ( FMap MF (proj₁ f ) , FMap MF (proj₂ f) ) - ; isFunctor = record { - } - } - F⊗ : Functor ( C × C ) D - F⊗ = record { - FObj = λ x → FObj MF ( proj₁ x ⊗ proj₂ x ) - ; FMap = λ {a} {b} f → FMap MF ( FMap (Monoidal.m-bi M) ( proj₁ f , proj₂ f) ) - ; isFunctor = record { - } - } - field - φab : NTrans ( C × C ) D F● F⊗ - φ : Hom D (Monoidal.m-i N) (FObj MF (Monoidal.m-i M) ) - isMonodailFunctor : IsMonoidalFunctor M N MF F● F⊗ φab φ + ψ : Hom D (Monoidal.m-i N) (FObj MF (Monoidal.m-i M) ) + isMonodailFunctor : IsMonoidalFunctor M N MF ψ