changeset 760:d17c556b9343

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 11 Dec 2017 20:37:22 +0900
parents fa6b75fa1d09
children e7c673eba848
files monad→monoidal.agda
diffstat 1 files changed, 6 insertions(+), 5 deletions(-) [+]
line wrap: on
line diff
--- a/monad→monoidal.agda	Mon Dec 11 18:44:47 2017 +0900
+++ b/monad→monoidal.agda	Mon Dec 11 20:37:22 2017 +0900
@@ -337,7 +337,7 @@
                      ) ) ) ) ) (λ f g x → f (g x))  )
              ≈⟨⟩ 
                  ( λ w → ( μ c o (FMap F (λ k → FMap F k w) o ( μ (a → c) o (  λ j → ( FMap F (λ k → FMap F k v)  o  FMap F j ) u ))))  (λ f g x → f (g x))  )
-             ≈↑⟨    ≡cong ( λ h →  ( λ w → ( μ c o (FMap F (λ k → FMap F k w) o ( μ (a → c) o (  λ j → h u ))))  (λ f g x → f (g x)) )) (distr F )  ⟩
+             ≈↑⟨    ≡cong ( λ h →  ( λ w → ( μ c o (FMap F (λ k → FMap F k w) o ( μ (a → c) o (  λ j → h u ))))  (λ (f : (b → c) ) (g : (a → b))  (x : a ) → f (g x)) )) (distr F )  ⟩
                  ( λ w → ( μ c o (FMap F (λ k → FMap F k w) o ( μ (a → c) o (  λ j → ( FMap F (( λ k → FMap F k v)  o   j ) u )))))  (λ f g x → f (g x))  )
              ≈⟨⟩
                  ( λ w → ( μ c o (FMap F (λ k → FMap F k w) o ( μ (a → c) o ( FMap F ((λ k → FMap F k v) o (λ f g x → f (g x)) ))   ))) u )
@@ -365,14 +365,15 @@
                       μ c  o (FMap F ((λ x → FMap F x w)  o (λ g x₁ → k (g x₁))))
                   ≈⟨⟩ 
                       μ c  o (FMap F ((λ x → (FMap F ( k o  x ) w))))
-                  ≈⟨ cdr {_} {_} {_} {_} {_} {μ c} (?) ⟩ 
+                  ≈⟨ cdr {_} {_} {_} {_} {_} {μ c}  ( fcong F ( extensionality Sets ( λ x →  ≡cong ( λ h → h w ) (distr F ) )))  ⟩ 
                       μ c  o (FMap F ((λ x → (FMap F k  o  FMap F x ) w)))
                   ≈⟨⟩ 
                       μ c  o (FMap F (FMap F k  o (λ h → FMap F h w))) 
-                  ≈⟨ {!!} ⟩ 
-                       μ c o ( FMap F (FMap F k ) o FMap F  (λ h → FMap F h w)) ≈⟨⟩ 
+                  ≈⟨ cdr {_} {_} {_} {_} {_} {μ c} ( distr F ) ⟩ 
+                       μ c o ( FMap F (FMap F k ) o FMap F  (λ h → FMap F h w))
+                  ≈⟨⟩ 
                        ( μ c o FMap F (FMap F k )) o FMap F  (λ h → FMap F h w)
-                  ≈⟨ {!!} ⟩
+                  ≈↑⟨ car {_} {_} {_} {_} {_} {FMap F  (λ h → FMap F h w)} (nat ( Monad.μ monad ))  ⟩
                       ((( FMap F k o  μ b ) o FMap F  (λ h → FMap F h w))          )
                   ∎ ) 
                 )))))  ⟩