Mercurial > hg > Members > kono > Proof > category
changeset 314:d1af69c4aaf8
on going...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 06 Jan 2014 17:18:13 +0900 |
parents | d72730946ba5 |
children | 0d7fa6fc5979 |
files | freyd.agda |
diffstat | 1 files changed, 14 insertions(+), 21 deletions(-) [+] |
line wrap: on
line diff
--- a/freyd.agda Mon Jan 06 00:46:48 2014 +0900 +++ b/freyd.agda Mon Jan 06 17:18:13 2014 +0900 @@ -25,15 +25,14 @@ record PreInitial {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (F : Functor A A ) : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where field - preinitial : ∀{ a : Obj A } → { b : Obj A } → Hom A ( FObj F b ) a - uniqueness : ∀{ a : Obj A } → { b : Obj A } → ( f : Hom A ( FObj F b ) a ) → - A [ f ≈ preinitial {a} {b} ] + preinitialObj : ∀{ a : Obj A } → Obj A + preinitialArrow : ∀{ a : Obj A } → Hom A ( FObj F (preinitialObj {a} )) a -- initial object record HasInitialObject {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (i : Obj A) : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where field - initial : ( a : Obj A ) → Hom A i a + initial : ∀( a : Obj A ) → Hom A i a uniqueness : ( a : Obj A ) → ( f : Hom A i a ) → A [ f ≈ initial a ] @@ -51,28 +50,22 @@ (PI : PreInitial A F ) → { a0 : Obj A } → { u : (a : Obj A) → NTrans A A (K A A a) F } → HasInitialObject A a0 initialFromPreInitialFullSubcategory A F FMap← lim SFS PI {a0} {u} = record { - initial = λ a → limit (lim F {a} {u a} ) a0 (u a0) ; + initial = initialArrow ; uniqueness = λ a f → lemma1 a f } where - lemma1 : (a : Obj A) (f : Hom A a0 a) → A [ f ≈ limit (lim F) a0 (u a0) ] + initialArrow : ∀( a : Obj A ) → Hom A a0 a + initialArrow a = A [ preinitialArrow PI {a} o limit (lim F {FObj F (preinitialObj PI)} {u (FObj F (preinitialObj PI))} ) a0 (u a0 ) ] + lemma1 : (a : Obj A) (f : Hom A a0 a) → A [ f ≈ initialArrow a ] lemma1 a f = let open ≈-Reasoning (A) in begin f - ≈↑⟨ limit-uniqueness (lim F) ( λ {i} → - begin - TMap (u a) i o f - ≈⟨ cdr {!!} ⟩ - TMap (u a) i o ( preinitial PI {a} {i} o (limit (lim F {FObj F i } {u {!!} }) a0 ( u a0 ) ) ) - ≈⟨ cdr {!!} ⟩ - TMap (u a) i o ( preinitial PI {a} {i} o TMap (u a0) i ) - ≈⟨ assoc ⟩ - ( TMap (u a) i o preinitial PI {a} {i} ) o TMap (u a0) i + ≈↑⟨ idR ⟩ + f o id1 A a0 ≈⟨ {!!} ⟩ - id1 A (FObj F i) o TMap (u a0) i - ≈⟨ idL ⟩ - TMap (u a0) i - ∎ - )⟩ - limit (lim F) a0 (u a0) + ( preinitialArrow PI {a} o limit (lim F) a0 (u a0)) o id1 A a0 + ≈⟨ idR ⟩ + preinitialArrow PI {a} o limit (lim F) a0 (u a0) + ≈⟨⟩ + initialArrow a ∎